Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Drug Saf ; 47(1): 59-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995048

RESUMO

BACKGROUND AND OBJECTIVE: Prior molecular modelling analysis identified several medicines as potential inhibitors of glutathione peroxidase 1 (GPx1) which may contribute to development or progression of chronic obstructive pulmonary disease (COPD). This study investigates 40 medicines (index medicines) for signals of COPD development or progression in a real-world dataset. METHODS: Sequence symmetry analysis (SSA) was conducted using a 10% extract of Australian Pharmaceutical Benefits Scheme (PBS) claims data between January 2013 and September 2019. Patients must have been initiated on an index medicine and a medicine for COPD development or progression within 12 months of each other. Sequence ratios were calculated as the number of patients who initiated an index medicine followed by a medicine for COPD development or progression divided by the number who initiated the index medicine second. An adjusted sequence ratio (aSR) was calculated which accounted for changes in prescribing trends. Adverse drug event signals (ADEs) were identified where the aSR lower 95% confidence interval (CI) was greater than 1. RESULTS: Twenty-one of 40 (53%) index medicines had at least one ADE signal of COPD development or progression. Signals of COPD development, as identified using initiation of tiotropium, were observed for atenolol (aSR 1.32, 95% CI 1.23-1.42) and naproxen (aSR 1.14, 95% CI 1.06-1.23). Several signals of COPD progression were observed, including initiation of fluticasone propionate/salmeterol following initiation of atenolol (aSR 1.44, 95% CI 1.30-1.60) and initiation of aclidinium/formoterol following initiation of naproxen (aSR 2.21, 95% CI 1.34-3.65). CONCLUSION: ADE signals were generated for several potential GPx1 inhibitors; however, further validation of signals is required in large well-controlled observational studies.


Assuntos
Prescrições de Medicamentos , Inibidores Enzimáticos , Glutationa Peroxidase GPX1 , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Glutationa Peroxidase GPX1/antagonistas & inibidores , Revisão da Utilização de Seguros/estatística & dados numéricos , Austrália , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Prescrições de Medicamentos/estatística & dados numéricos , Progressão da Doença
2.
ACS Infect Dis ; 9(12): 2504-2522, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37888944

RESUMO

The inhibition of efflux pumps is a promising approach to combating multidrug-resistant bacteria. We have developed a combined structure- and ligand-based model, using OpenEye software, for the identification of inhibitors of AcrB, the inner membrane protein component of the AcrAB-TolC efflux pump in Escherichia coli. From a database of 1391 FDA-approved drugs, 23 compounds were selected to test for efflux inhibition in E. coli. Seven compounds, including ivacaftor (25), butenafine (19), naftifine (27), pimozide (30), thioridazine (35), trifluoperazine (37), and meloxicam (26), enhanced the activity of at least one antimicrobial substrate and inhibited the efflux pump-mediated removal of the substrate Nile Red from cells. Ivacaftor (25) inhibited efflux dose dependently, had no effect on an E. coli strain with genomic deletion of the gene encoding AcrB, and did not damage the bacterial outer membrane. In the presence of a sub-minimum inhibitory concentration (MIC) of the outer membrane permeabilizer colistin, ivacaftor at 1 µg/mL reduced the MICs of erythromycin and minocycline by 4- to 8-fold. The identification of seven potential AcrB inhibitors shows the merits of a combined structure- and ligand-based approach to virtual screening.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Ligantes , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antibacterianos/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
3.
Pharm Res ; 40(6): 1553-1568, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37173537

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease is characterised by declining lung function and a greater oxidative stress burden due to reduced activity of antioxidant enzymes such as Glutathione Peroxidase 1. OBJECTIVES: The extent to which drugs may contribute to this compromised activity is largely unknown. An integrative drug safety model explores inhibition of Glutathione Peroxidase 1 by drugs and their association with chronic obstructive pulmonary disease adverse drug events. METHODS: In silico molecular modelling approaches were utilised to predict the interactions that drugs have within the active site of Glutathione Peroxidase 1 in both human and bovine models. Similarities of chemical features between approved drugs and the known inhibitor tiopronin were also investigated. Subsequently the Food and Drug Administration Adverse Event System was searched to uncover adverse drug event signals associated with chronic obstructive pulmonary disease. RESULTS: Statistical and molecular modelling analyses confirmed that the use of several registered drugs, including acetylsalicylic acid and atenolol may be associated with inhibition of Glutathione Peroxidase 1 and chronic obstructive pulmonary disease. CONCLUSION: The integration of molecular modelling and pharmacoepidemological data has the potential to advance drug safety science. Ongoing review of medication use and further pharmacoepidemiological and biological analyses are warranted to ensure appropriate use is recommended.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doença Pulmonar Obstrutiva Crônica , Animais , Bovinos , Humanos , Glutationa Peroxidase GPX1 , Glutationa , Glutationa Peroxidase/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
4.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049714

RESUMO

Cyclin-dependent kinase 2 (CDK2) has been garnering considerable interest as a target to develop new cancer treatments and to ameliorate resistance to CDK4/6 inhibitors. However, a selective CDK2 inhibitor has yet to be clinically approved. With the desire to discover novel, potent, and selective CDK2 inhibitors, the phenylsulfonamide moiety of our previous lead compound 1 was bioisosterically replaced with pyrazole derivatives, affording a novel series of N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amines that exhibited potent CDK2 inhibitory activity. Among them, 15 was the most potent CDK2 inhibitor (Ki = 0.005 µM) with a degree of selectivity over other CDKs tested. Meanwhile, this compound displayed sub-micromolar antiproliferative activity against a panel of 13 cancer cell lines (GI50 = 0.127-0.560 µM). Mechanistic studies in ovarian cancer cells revealed that 15 reduced the phosphorylation of retinoblastoma at Thr821, arrested cells at the S and G2/M phases, and induced apoptosis. These results accentuate the potential of the N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amine scaffold to be developed into potent and selective CDK2 inhibitors for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quinase 2 Dependente de Ciclina , Relação Estrutura-Atividade , Aminas/farmacologia , Antineoplásicos/farmacologia , Pirazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Estrutura Molecular
5.
Bioorg Med Chem ; 80: 117158, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706608

RESUMO

Deregulation of cyclin-dependent kinase 2 (CDK2) and its activating partners, cyclins A and E, is associated with the pathogenesis of a myriad of human cancers and with resistance to anticancer drugs including CDK4/6 inhibitors. Thus, CDK2 has become an attractive target for the development of new anticancer therapies and for the amelioration of the resistance to CDK4/6 inhibitors. Bioisosteric replacement of the thiazole moiety of CDKI-73, a clinically trialled CDK inhibitor, by a pyrazole group afforded 9 and 19 that displayed potent CDK2-cyclin E inhibition (Ki = 0.023 and 0.001 µM, respectively) with submicromolar antiproliferative activity against a panel of cancer cell lines (GI50 = 0.025-0.780 µM). Mechanistic studies on 19 with HCT-116 colorectal cancer cells revealed that the compound reduced the phosphorylation of retinoblastoma at Ser807/811, arrested the cells at the G2/M phase, and induced apoptosis. These results highlight the potential of the 2-anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine series in developing potent and selective CDK2 inhibitors to combat cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Pirazóis/farmacologia
6.
Front Microbiol ; 13: 967949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106080

RESUMO

Acinetobacter baumannii is a pathogen with high intrinsic antimicrobial resistance while multidrug resistant (MDR) and extensively drug resistant (XDR) strains of this pathogen are emerging. Treatment options for infections by these strains are very limited, hence new therapies are urgently needed. The bacterial cell division protein, FtsZ, is a promising drug target for the development of novel antimicrobial agents. We have previously reported limited activity of cinnamaldehyde analogs against Escherichia coli. In this study, we have determined the antimicrobial activity of six cinnamaldehyde analogs for antimicrobial activity against A. baumannii. Microscopic analysis was performed to determine if the compounds inhibit cell division. The on-target effect of the compounds was assessed by analyzing their effect on polymerization and on the GTPase activity of purified FtsZ from A. baumannii. In silico docking was used to assess the binding of cinnamaldehyde analogs. Finally, in vivo and in vitro safety assays were performed. All six compounds displayed antibacterial activity against the critical priority pathogen A. baumannii, with 4-bromophenyl-substituted 4 displaying the most potent antimicrobial activity (MIC 32 µg/mL). Bioactivity was significantly increased in the presence of an efflux pump inhibitor for A. baumannii ATCC 19606 (up to 32-fold) and significantly, for extensively drug resistant UW 5075 (greater than 4-fold), suggesting that efflux contributes to the intrinsic resistance of A. baumannii against these agents. The compounds inhibited cell division in A. baumannii as observed by the elongated phenotype and targeted the FtsZ protein as seen from the inhibition of polymerization and GTPase activity. In silico docking predicted that the compounds bind in the interdomain cleft adjacent to the H7 core helix. Di-chlorinated 6 was devoid of hemolytic activity and cytotoxicity against mammalian cells in vitro, as well as adverse activity in a Caenorhabditis elegans nematode model in vivo. Together, these findings present halogenated analogs 4 and 6 as promising candidates for further development as antimicrobial agents aimed at combating A. baumannii. This is also the first report of FtsZ-targeting compounds with activity against an XDR A. baumannii strain.

7.
Biomolecules ; 12(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883516

RESUMO

The regulation of vitamin D3 actions in humans occurs mainly through the Cytochrome P450 24-hydroxylase (CYP24A1) enzyme activity. CYP24A1 hydroxylates both 25-hydroxycholecalciferol (25(OH)D3) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3), which is the first step of vitamin D catabolism. An abnormal status of the upregulation of CYP24A1 occurs in many diseases, including chronic kidney disease (CKD). CYP24A1 upregulation in CKD and diminished activation of vitamin D3 contribute to secondary hyperparathyroidism (SHPT), progressive bone deterioration, and soft tissue and cardiovascular calcification. Previous studies have indicated that CYP24A1 inhibition may be an effective strategy to increase endogenous vitamin D activity and decrease SHPT. This study has designed and synthesized a novel C-24 O-methyloxime analogue of vitamin D3 (VD1-6) to have specific CYP24A1 inhibitory properties. VD1-6 did not bind to the vitamin D receptor (VDR) in concentrations up to 10-7 M, assessed by a VDR binding assay. The absence of VDR binding by VD1-6 was confirmed in human embryonic kidney HEK293T cultures through the lack of CYP24A1 induction. However, in silico docking experiments demonstrated that VD1-6 was predicted to have superior binding to CYP24A1, when compared to that of 1,25(OH)2D3. The inhibition of CYP24A1 by VD1-6 was also evident by the synergistic potentiation of 1,25(OH)2D3-mediated transcription and reduced 1,25(OH)2D3 catabolism over 24 h. A further indication of CYP24A1 inhibition by VD1-6 was the reduced accumulation of the 24,25(OH)D3, the first metabolite of 25(OH)D catabolism by CYP24A1. Our findings suggest the potent CYP24A1 inhibitory properties of VD1-6 and its potential for testing as an alternative therapeutic candidate for treating SHPT.


Assuntos
Colecalciferol , Insuficiência Renal Crônica , Colecalciferol/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Humanos , Oximas , Receptores de Calcitriol/metabolismo , Vitamina D , Vitamina D3 24-Hidroxilase/metabolismo
8.
Pharmacol Res ; 180: 106249, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35533805

RESUMO

Cyclin-dependent kinase 3 (CDK3) is a major player driving retinoblastoma (Rb) phosphorylation during the G0/G1 transition and in the early G1 phase of the cell cycle, preceding the effects of CDK4/cyclin D, CDK6/cyclin D, and CDK2/cyclin E. CDK3 can also directly regulate the activity of E2 factor (E2F) by skipping the role of Rb in late G1, potentially via the phosphorylation of the E2F1 partner DP1. Beyond the cell cycle, CDK3 interacts with various transcription factors involved in cell proliferation, differentiation, and transformation driven by the epidermal growth factor receptor (EGFR)/rat sarcoma virus (Ras) signaling pathway. The expression of CDK3 is extremely low in normal human tissue but upregulated in many cancers, implying a profound role in oncogenesis. Further evaluation of this role has been hampered by the lack of selective pharmacological inhibitors. Herein, we provide a comprehensive overview about the therapeutic potential of targeting CDK3 in cancer.


Assuntos
Neoplasias , Animais , Ciclo Celular , Ciclina D/metabolismo , Quinase 3 Dependente de Ciclina/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosforilação
9.
J Med Chem ; 65(7): 5244-5273, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35306814

RESUMO

Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.


Assuntos
Neoplasias , Tanquirases , Domínio Catalítico , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Tanquirases/metabolismo
10.
J Clin Pharm Ther ; 46(6): 1687-1694, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431531

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Proton pump inhibitors (PPIs), used to treat and prevent gastro-oesophageal conditions, are well-tolerated but have been associated with risk including pneumonia. The extent to which initiation of PPIs can contribute to other respiratory conditions such as chronic obstructive pulmonary disease (COPD) is largely unknown. METHODS: A sequence symmetry analysis (SSA) approach was applied to the Australian Department of Human Services, Pharmaceutical Benefits Scheme 10% extract. Participants were aged 45 years and older and were dispensed PPIs (ATC Codes A02BC01, A02BC02, A02BC03, A02BC04 and A02BC05) and long-acting bronchodilators (LABDs) for COPD (ATC Codes R03BB04 (PBS Item Code 10509D and 08626B), R03BB05, R03BB06, R03BB07 and R03AC18 (PBS Item Code 05137J and 05134F)) between 2013 and 2019. The analysis included patients initiated on an LABD within 12 months before or after their first prescription of a PPI. The crude sequence ratio (cSR) was calculated as the number of patients prescribed their first LABD after starting a PPI divided by the number of patients prescribed their first LABD before starting a PPI. Calculation of the adjusted sequence ratio (aSR) accounted for prescribing trends over time in initiation of each of the medicines. A signal was identified where the aSR lower 95% confidence interval (CI) was greater than one. RESULTS AND DISCUSSION: Initiation of omeprazole was associated with a 29% increased risk of initiating a LABD (ASR = 1.29 95% CI 1.22-1.36). Initiation of esomeprazole, rabeprazole, pantoprazole or lansoprazole was associated with 25%, 15%, 8% and 8% increased risk, respectively. WHAT IS NEW AND CONCLUSION: There is an established association between gastro-oesophageal reflux disease and COPD which has been confirmed by implementation of a sequence symmetry-based approach which demonstrated that PPI initiation is potentially associated with progression or exacerbation of COPD. The impact PPI use has directly on this association requires further investigation.


Assuntos
Broncodilatadores/administração & dosagem , Inibidores da Bomba de Prótons/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/etiologia , Idoso , Broncodilatadores/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Bomba de Prótons/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA