Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Earths Future ; 10(11): e2022EF002803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36582412

RESUMO

The climate science and applications communities need a broad and demand-driven concept to assess physical climate conditions that are relevant for impacts on human and natural systems. Here, we augment the description of the "climatic impact-driver" (CID) approach adopted in the Working Group I (WGI) contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report. CIDs are broadly defined as "physical climate system conditions (e.g., means, events, and extremes) that affect an element of society or ecosystems. Depending on system tolerance, CIDs and their changes can be detrimental, beneficial, neutral, or a mixture of each across interacting system elements and regions." We give background information on the IPCC Report process that led to the development of the 7 CID types (heat and cold, wet and dry, wind, snow and ice, coastal, open ocean, and other) and 33 distinct CID categories, each of which may be evaluated using a variety of CID indices. This inventory of CIDs was co-developed with WGII to provide a useful collaboration point between physical climate scientists and impacts/risk experts to assess the specific climatic phenomena driving sectoral responses and identify relevant CID indices within each sector. The CID Framework ensures that a comprehensive set of climatic conditions informs adaptation planning and risk management and may also help prioritize improvements in modeling sectoral dynamics that depend on climatic conditions. CIDs contribute to climate services by increasing coherence and neutrality when identifying and communicating relevant findings from physical climate research to risk assessment and planning activities.

2.
Sci Rep ; 8(1): 14395, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258078

RESUMO

West Africa is in general limited to rainfed agriculture. It lacks irrigation opportunities and technologies that are applied in many economically developed nations. A warming climate along with an increasing population and wealth has the potential to further strain the region's potential to meet future food needs. In this study, we investigate West Africa's hydrological potential to increase agricultural productivity through the implementation of large-scale water storage and irrigation. A 23-member ensemble of Regional Climate Models is applied to assess changes in hydrologically relevant variables under 2 °C and 1.5 °C global warming scenarios according to the UNFCCC 2015 Conference of Parties (COP 21) agreement. Changes in crop water demand, irrigation water need, water availability and the difference between water availability and irrigation water needs, here referred as basin potential, are presented for ten major river basins covering entire West Africa. Under the 2 °C scenario, crop water demand and irrigation water needs are projected to substantially increase with the largest changes in the Sahel and Gulf of Guinea respectively. At the same time, irrigation potential, which is directly controlled by the climate, is projected to decrease even in regions where water availability increases. This indicates that West African river basins will likely face severe freshwater shortages thus limiting sustainable agriculture. We conclude a general decline in the basin-scale irrigation potential in the event of large-scale irrigation development under 2 °C global warming. Reducing the warming to 1.5 °C decreases these impacts by as much as 50%, suggesting that the region of West Africa clearly benefits from efforts of enhanced mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA