Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433094

RESUMO

This article presents the results of research on obtaining new polyurethane (PUR) foams modified with thermally expanded vermiculite. The filler was added in amount of 3 wt.% up to 15 wt.%. The additionally applied procedure of immersion the non-organic filler in H2O2 was performed to increase the exfoliation effect of thermally treated mineral and additional oxidation the surfaces. The effect of fillers on foaming process, cell structure, thermal insulation, apparent density, compressive strength, thermal properties, and flammability are assessed. The foaming process of PUR foams modified with vermiculite was comparable for all systems, regardless of the content of the filler. A slight increase in reactivity was observed, confirmed by a faster decrease in dielectric polarization for the system with modified vermiculite by H2O2. The modification of the reference system with the vermiculite increased the content of closed cells from 76% to 91% for the foams with the highest vermiculite content. Coefficient of thermal conductivity of reference foam and foams modified with vermiculite was in the range 24-26 mW/mK. The use of vermiculite up to 15 wt.% did not influence significantly on mechanical properties and flammability, which from an economic point of view is important because it is possible to reduce the cost of materials by introducing a cheap filler without deteriorating their properties.

2.
Materials (Basel) ; 14(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925532

RESUMO

This paper investigates the impact of the technological process (Mechanochemical Activation (MA) of the powder in combination with the Spark Plasma Sintering (SPS) method) on the final properties of lead-free Ba(Fe1/2Nb1/2)O3 (BFN) ceramic materials. The BFN powders were obtained for different MA duration times (x from 10 to 100 h). The mechanically activated BFN powders were used in the technological process of the BFN ceramics by the SPS method. The measurements of the BFNxMA ceramic samples included the following analysis: Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), DC electrical conductivity, and dielectric properties. X-ray diffractions (XRD) tests showed the appearance of the perovskite phase of BFN powders after 10 h of milling time. The longer milling time (up 20 h) causes the amount of the perovskite phase to gradually increase, and the diffraction peaks are more clearly visible. Short high energy milling times favor a large heterogeneity of the grain shape and size. Increasing the MA milling time to 40 h significantly improves the microstructure of BFN ceramics sintered in the SPS technology. The microstructure becomes fine-grained with clearly visible grain boundaries and higher grain size uniformity. Temperature measurements of the BFN ceramics show a number of interesting dielectric properties, i.e., high values of electric permittivity, relaxation properties with a diffusion phase transition, as well as negative values of dielectric properties occurring at high temperatures. The high electric permittivity values predestines the BFNxMA materials for energy storage applications e.g., high energy density batteries, while the negative values of dielectric properties can be used for shield elements against the electromagnetic radiation.

3.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952270

RESUMO

Alkaline based materials have been considered as a replacement for environmentally harmful Pb(Zr,Ti)O3 (PZT) electro-ceramics. In this paper, the K1/2Na1/2NbO3 (KNN) ceramics were prepared in a three stage process: first Nb2O5, Na2CO3, and K2CO3 were milled in a high energy mill (shaker type) for different periods, between 25 h and 100 h, consecutively a solid state reaction was carried out at 550 °C. Finally, the uniaxially pressed samples were sintered at 1000 °C. The reaction temperature is lower for mechanically activated powders than in the case of the conventional solid-state method. The ceramic samples, prepared from the mechanically activated powders, were investigated by dielectric spectroscopy. The influence of the duration of the mechanical activation on the properties of the ceramic materials, e.g., ceramic microstructures, phase transition temperatures, character of the temperature dependences of dielectric permittivity, are discussed.

4.
Materials (Basel) ; 12(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817262

RESUMO

Mechanochemical synthesis offers unique possibility of perovskite phase formation at ambient conditions that is very attractive (simplifies production, allows strict stoichiometry control and brings economic benefits). In this work the mechanochemical synthesis has been used for preparation ofBa1-xCaxTiO3 (0.2 ≤ x ≤ 0.3) powders from simple oxides. The 20 h milled powders have been uniaxially pressed and sintered in order to get the ceramic samples. The sample morphologies have been observed by scanning electron microscopy. Dielectric and impedance studies have been performed on ceramics. The obtained results indicate that the two mechanism of doping occurred. The first one is observed for the lower calcium concentration (below 0.3) and consists of the introduction of calcium ion into the A site of the perovskite structure. The second one is observed for the higher calcium concentration (equal 0.3). In this case the calcium ions partially occupies the B site in the perovskite structure. Both cases have different influence on the final properties of the ceramics because they induce different defects.

5.
Materials (Basel) ; 12(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614453

RESUMO

In the paper, the multicomponent PZT-type ceramics with Pb(Zr0.49Ti0.51)0.94Mn0.015Sb0.01W0.015Ni0.03O3 composition have been obtained by conventional and mechanochemical methods. With conventional ceramic technology, PZT-type ceramics have been synthesized by the method of calcination powder (850 °C/4 h). Instead of this step, the mechanochemical synthesis process for different milling periods (15 h, 25 h, 50 h, 75 h) has been applied for a second batch of samples. To obtain the dense PZT-type ceramic samples, powders have been sintered by free sintering method at conditions of 1150 °C/2 h. Studies have shown that the perovskite structure of the PZT-type material is formed during mechanochemical activation of powders during the technological process at low temperature. The application of the mechanochemical synthesis to obtain the PZT-type materials also allows shortening of the technological process, and the useful electrophysical properties of ceramic samples are not reduced at the same time. The presented results have confirmed that the investigated materials can be used in microelectronic applications, especially as elements of actuators and piezoelectric transducers.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25004531

RESUMO

Cd(2)Nb(2)O(7) is still an interesting ferroelectric material because of its high permittivity value at helium temperatures and a variety of dielectric relaxation processes, the origin of which is still puzzling. We prepared hot-pressed ceramics, with grain sizes from 100 to 150 nm, obtained from Cd(2)Nb(2)O(7) nanopowders synthesized by high-energy milling of CdO and Nb(2)O(5) and studied their dielectric response and thermal properties. The nanoceramics were characterized by X-ray diffraction and their dielectric properties were measured at temperatures from 4K to 575K. Dielectric response of the nanoceramics was found to consist of a huge anomaly at ~150K with complex dielectric absorption and three relaxation processes apparent in frequency and temperature dependences of the imaginary part of permittivity in the temperature range from 18K to 145K. The anomaly at ~150K is related to overlapping contributions from the Curie point (shifted downward because of the size effect) and a dielectric relaxation process. The behavior of three relaxation modes observed at temperatures below 145K is discussed, based on the model proposed by Malcherek of polar nanoregions in the orthorhombic phase of Cd(2)Nb(2)O(7) and the theory of dielectric response of ferroelectric relaxors by Bokov and Ye.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA