Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Pathol Oncol Res ; 28: 1610659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213161

RESUMO

Background: Ibrutinib is widely known as an effective and well-tolerated therapeutical choice of the chronic lymphocytic leukaemia (CLL). However, acquired resistance may occur during the treatment, causing relapse. Early detection of ibrutinib resistance is an important issue, therefore we aimed to find phenotypic markers on CLL cells the expression of which may correlate with the appearance of ibrutinib resistance. Methods: We examined 28 patients' peripheral blood (PB) samples (treatment naïve, ibrutinib sensitive, clinically ibrutinib resistant). The surface markers' expression (CD27, CD69, CD86, CD184, CD185) were measured by flow cytometry. Furthermore, the BTKC481S resistance mutation was assessed by digital droplet PCR. Moreover, the CLL cells' phenotype of a patient with acquired ibrutinib resistance was observed during the ibrutinib treatment. Results: The expression of CD27 (p = 0.030) and CD86 (p = 0.031) became higher in the clinically resistant cohort than in the ibrutinib sensitive cohort. Besides, we found that high CD86 and CD27 expressions were accompanied by BTKC481S mutation. Our prospective study showed that the increase of the expression of CD27, CD69 and CD86 was noticed ahead of the clinical resistance with 3 months. Conclusion: Our study suggests that the changes of the expression of these markers could indicate ibrutinib resistance and the examination of these phenotypic changes may become a part of the patients' follow-up in the future.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Citometria de Fluxo , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Piperidinas , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico
2.
J Clin Endocrinol Metab ; 107(11): 3066-3079, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36059148

RESUMO

CONTEXT: DNA demethylation and inhibitory effects of aspirin on pituitary cell proliferation have been demonstrated. OBJECTIVE: Our aim was to clarify the molecular mechanisms behind the aspirin-related effects in pituitary cells. METHODS: DNA methylome and whole transcriptome profile were investigated in RC-4B/C and GH3 pituitary cell lines upon aspirin treatment. Effects of aspirin and a demethylation agent, decitabine, were further tested in vitro. PTTG1 expression in 41 human PitNET samples and whole genome gene and protein expression data of 76 PitNET and 34 control samples (available in Gene Expression Omnibus) were evaluated. RESULTS: Aspirin induced global DNA demethylation and consequential transcriptome changes. Overexpression of Tet enzymes and their cofactor Uhrf2 were identified behind the increase of 5-hydroxymethylcytosine (5hmC). Besides cell cycle, proliferation, and migration effects that were validated by functional experiments, aspirin increased Tp53 activity through p53 acetylation and decreased E2f1 activity. Among the p53 controlled genes, Pttg1 and its interacting partners were downregulated upon aspirin treatment by inhibiting Pttg1 promoter activity. 5hmC positively correlated with Tet1-3 and Tp53 expression, and negatively correlated with Pttg1 expression, which was reinforced by the effect of decitabine. Additionally, high overlap (20.15%) was found between aspirin-regulated genes and dysregulated genes in PitNET tissue samples. CONCLUSION: A novel regulatory network has been revealed, in which aspirin regulated global demethylation, Tp53 activity, and Pttg1 expression along with decreased cell proliferation and migration. 5hmC, a novel tissue biomarker in PitNET, indicated aspirin antitumoral effect in vitro as well. Our findings suggest the potential beneficial effect of aspirin in PitNET.


Assuntos
Adenoma , Neoplasias Hipofisárias , Humanos , Adenoma/tratamento farmacológico , Adenoma/genética , Aspirina/farmacologia , Decitabina , Oxigenases de Função Mista/metabolismo , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Cytometry A ; 101(2): 159-166, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34296508

RESUMO

Plasma cell myeloma (multiple myeloma [MM]) is a malignant neoplasm originating from the plasma cells. Besides other methods, flow cytometric analysis of the patient's bone marrow aspirate has an important role in the diagnosis and also in the response assessment. Since the cell surface markers, used for identifying abnormal plasma cells, are expressed diversely and the treatment can also alter the phenotype of the plasma cells, there is an increasing demand for new plasma cell markers. VS38c is a monoclonal antibody that recognizes the CLIMP-63 protein in the membrane of the endoplasmic reticulum. CLIMP-63 is known to be expressed at high levels in normal and pathologic plasma cells in the bone marrow, thus VS38c antibody can be used to identify them. Although VS38c staining of plasma cells is reported to be constant and strong even in myeloma, we were wondering whether sample preparation can affect the staining. We have investigated the effect of different permeabilization agents and washing of the cells on the quality of the VS38c staining and found that in many cases the staining is inadequate to identify the plasma cells. We measured the VS38c staining of the bone marrow aspirates of 196 MM patients and observed that almost all cases showed bright staining with VS38c. However, permeabilization with mild detergent resulted in the appearance of a significant VS38cdim subpopulation, which showed increased sensitivity to mechanical stress (centrifugation). Our results indicate that VS38cdim MM cells can appear due to the improper permeabilization of the endoplasmic reticulum and this finding raises the possibility of the existence of a plasma cell subpopulation with different membrane properties. The significance of this population is unclear yet, but these cells can be easily missed with VS38c staining and can be lost due to centrifugation-induced lysis during sample preparation.


Assuntos
Mieloma Múltiplo , Anticorpos Monoclonais , Medula Óssea/patologia , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem , Mieloma Múltiplo/diagnóstico , Plasmócitos/metabolismo , Plasmócitos/patologia
4.
Hematol Oncol ; 39(4): 513-520, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34013974

RESUMO

In the pathogenesis of chronic lymphocytic leukemia (CLL) the microenvironment plays an important role, as it produces survival signals and mediates drug resistance. Lenalidomide, which has immunomodulatory effect, can enhance the activation of T-, NK-cells and endothelial cells, however there are no data available whether it can modulate bone marrow stromal cells (BMSCs). In our study, we investigated the effects of lenalidomide on BMSCs and CLL cells. CLL cells were cultured alone or with BMSCs and were treated with lenalidomide. Apoptosis, immunophenotype, and cytokine secretion of BMSCs and CLL cells were determined by flow cytometry. Lenalidomide slightly increased the apoptosis of CLL cells and abrogated the anti-apoptotic effect of BMSCs on CLL cells. Lenalidomide treatment decreased the expression of antigens on CLL cells, which mediate the interactions with the microenvironment. Interestingly, lenalidomide enhanced the expression of IRF4 and the co-stimulatory molecule CD86. The secretion of several cytokines was not changed significantly by lenalidomide. CD49d-negative CLL cases were more sensitive to lenalidomide treatment. Our results suggest that lenalidomide has a limited effect on BMSCs, but it renders CLL cells more immunogenic and unresponsive to survival signals provided by BMSCs.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Medula Óssea/metabolismo , Lenalidomida/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/farmacologia , Feminino , Humanos , Lenalidomida/farmacologia , Masculino , Pessoa de Meia-Idade
5.
Acta Oncol ; 60(4): 528-530, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33491510

RESUMO

BACKGROUND: The Bcl-2 inhibitor venetoclax has been recently introduced into the treatment of chronic lymphocytic leukemia. Venetoclax is a highly effective drug, however acquired resistance may make long-term treatment challenging. In our study, we present potential novel resistance mechanisms and prognostic markers that are potentially able to predict the early appearance of the resistance. MATERIAL AND METHODS: Repeated complete blood counts, flow cytometric measurements, and physical examinations were performed during the patient follow-up. Clinical and laboratory parameters showed that the patient developed clinical resistance to venetoclax on day 450 of therapy. Resistance mutation analysis (D103Y) and apoptosis arrays from samples at the time of resistance were done. RESULTS: We were able to identify the resistance mutations just a very low variant allele frequency level from the resistant samples. Furthermore we detected increased Bcl-2 expression in peripheral blood (PB), and XIAP overexpression in bone marrow (BM) that could lead to venetoclax resistance. We examined the immunophenotype of CLL cells and recognized that while the expression of CD86 did not change until day 270 of the treatment, since then its expression steadily increased. Moreover, we compared the expression of CD86 in the resistant PB and BM samples and did not find a notable difference between the compartments. CONCLUSION: Our results imply that CLL cells may try to avoid the apoptotic effect of venetoclax through increased CD86 expression by activating antiapoptotic mechanisms. Confirmatory experiments are still required to unequivocally prove that CD86 is a prognostic marker, however, its predictive property during the venetoclax treatment is promising.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Sulfonamidas/uso terapêutico
7.
PLoS Genet ; 16(10): e1009016, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031417

RESUMO

Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico/genética , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Domínio AAA/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Transporte Biológico Ativo/genética , Domínio Catalítico/genética , Ácido Glutâmico/genética , Humanos , Hidrólise , Metionina/genética , Simulação de Dinâmica Molecular , Mutação/genética , Nucleotídeos/genética , Ligação Proteica/genética , Domínios Proteicos/genética
8.
Nutrients ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517031

RESUMO

Diabetes mellitus-related morbidity and mortality is a rapidly growing healthcare problem, globally. Several nutraceuticals exhibit potency to target the pathogenesis of diabetes mellitus. The antidiabetic effects of compounds of garlic have been extensively studied, however, limited data are available on the biological effects of a certain garlic component, allithiamine. In this study, allithiamine was tested using human umbilical cord vein endothelial cells (HUVECs) as a hyperglycaemic model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometric analysis using antibodies against specific marker proteins including CD31, CD45, CD54, and CD106. The non-cytotoxic concentration of allithiamine was determined based on MTT, apoptosis, and necrosis assays. Subsequently, cells were divided into three groups: incubating with M199 medium as the control; or with 30 mMol/L glucose; or with 30 mMol/L glucose plus allithiamine. The effect of allithiamine on the levels of advanced glycation end-products (AGEs), activation of NF-κB, release of pro-inflammatory cytokines including IL-6, IL-8, and TNF-α, and H2O2-induced oxidative stress was investigated. We found that in the hyperglycaemia-induced increase in the level of AGEs, pro-inflammatory changes were significantly suppressed by allithiamine. However, allithiamine could not enhance the activity of transketolase, but it exerts a potent antioxidant effect. Collectively, our data suggest that allithiamine could alleviate the hyperglycaemia-induced endothelial dysfunction due to its potent antioxidant and anti-inflammatory effect by a mechanism unrelated to the transketolase activity.


Assuntos
Anti-Inflamatórios , Antioxidantes , Endotélio Vascular/fisiopatologia , Alho/química , Hiperglicemia/tratamento farmacológico , Hiperglicemia/fisiopatologia , Fitoterapia , Tiamina/análogos & derivados , Citocinas/metabolismo , Endotélio Vascular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/metabolismo , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tiamina/isolamento & purificação , Tiamina/farmacologia , Tiamina/uso terapêutico , Transcetolase/metabolismo
9.
Pathol Oncol Res ; 25(2): 647-652, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30406401

RESUMO

Micro-environment plays important role in the pathogenesis of CLL by providing protective niche for CLL cells. Several molecules play important role in communication between CLL cells and immune cells like CD86.Some of the data suggest that CLL patients with high CD86 level need earlier treatments and cells with higher CD86 expression has higher proliferation rate but the role of CD86 in the survival and proliferation of CLL cells is unclear. We investigated the effect of CD86 expression to CLL cells in 50 peripheral blood and 15 lymph node biopsy samples from CLL patients. Our results showed that the expressions of CD86 increased significantly after 7 day culturing in medium, or in the presence of bone marrow stromal cells (BMSCs). We found positive correlation between CD86 and CD23 expression (p < 0.05), but no correlation with other markers. Furthermore, no correlation were found between the CD86 expression and the proliferation of CLL cells. Analysis of clinical data showed that cases with high CD86 expression had lower level of serum lymphocyte count (p < 0.04) at the time of the diagnosis. CD86 shows multiple appearances in the lymph nodes containing pseudofollicules, but no correlation was found between CD86 positivity, and Ki67 positivity. Our results suggest that the use of CD86 molecule as a proliferation marker for CLL is highly questionable. However, the CD86 molecule may interfere with the immune system of patients with CLL by activating and depleting immune functions. That can be the reason why CD86 positivity may mean worse prognosis.


Assuntos
Antígeno B7-2/metabolismo , Biomarcadores Tumorais/análise , Proliferação de Células/fisiologia , Leucemia Linfocítica Crônica de Células B/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sobrevivência Celular/fisiologia , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade
10.
Exp Biol Med (Maywood) ; 243(12): 1014-1023, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30111166

RESUMO

MiR-206 is a remarkable miRNA because it functions as a suppressor miRNA in rhabdomyosarcoma while at the same time, as previously showed, it can act as an oncomiRNA in SMARCB1 immunonegative soft tissue sarcomas. The aim of this study was to investigate the effect of miR-206 on its several target genes in various human tumorous and normal cell lines. In the current work, we created miR-206-overexpressing cell lines (HT-1080, Caco2, iASC, and SS-iASC) using permanent transfection. mRNA expression of the target genes of miR-206 (SMARCB1, ACTL6A, CCND1, POLA1, NOTCH3, MET, and G6PD) and SMARCB1 protein expression were examined with quantitative real-time polymerase chain reaction, immunoblotting, immunocytochemistry, and flow cytometry. MiRNA inhibition was used to validate our results. We found a diverse silencing effect of miR-206 on its target genes. While an overall tendency of downregulation was noted, expression profiles of individual cell lines showed large variability. Only CCND1 and MET were consistently downregulated. MiR-206 had an antiproliferative effect on a normal human fibroblast cell line. A strong silencing effect of SMARCB1 in miR-206 transfected SS-iASC was most likely caused by the synergic influence of the SS18-SSX1 fusion protein and miR-206. In the same cell line, a moderate decrease of SMARCB1 protein expression could be observed with immunocytochemistry and flow cytometry. In the most comprehensive analysis of miR-206 effects so far, a modest but significant downregulation of miR-206 targets on the mRNA level was confirmed across all cell lines. However, the variability of the effect shows that the action of this miRNA is largely cell context-dependent. Our results also support the conception that the oncomiR effect of miR-206 on SMARCB1 plays an important but not exclusive role in SMARCB1 immunonegative soft tissue sarcomas so it can be considered important in planning the targeted therapy of these tumors in the future. Impact statement Mir-206 is a very unique microRNA because it can act as a suppressor miRNA or as an oncomiRNA depending on the tumor tissue. In SMARCB1 negative soft tissue sarcomas miR-206 is overexpressed, so thus in epithelioid and synovial sarcomas it functions as an oncomiRNA. MiR-206 has diverse silencing effects on its target genes. We found that the action of miR-206 is largely cell context dependent. The oncomiR role of miR-206 is crucial but not exclusive in SMARCB1 negative soft tissue sarcomas and miR-206 has an antiproliferative effect on a normal human fibroblast cell line. Expressions of miR-206 targets observed in tumors can only be reproduced in the corresponding tumorous cell lines. This is the first study which examined the permanent effect of miR-206 on its target genes in normal, tumor, and genetically engineered cell lines.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Rabdomiossarcoma/genética , Transfecção , Células CACO-2 , Linhagem Celular Tumoral , Regulação para Baixo , Epigênese Genética , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Rabdomiossarcoma/tratamento farmacológico , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/genética , Transdução de Sinais
11.
Sci Rep ; 7: 41376, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145501

RESUMO

Retinoids - derivatives of vitamin A - are important cell permeant signaling molecules that regulate gene expression through activation of nuclear receptors. P-glycoprotein (Pgp) and ABCG2 are plasma membrane efflux transporters affecting the tissue distribution of numerous structurally unrelated lipophilic compounds. In the present work we aimed to study the interaction of the above ABC transporters with retinoid derivatives. We have found that 13-cis-retinoic acid, retinol and retinyl-acetate inhibited the Pgp and ABCG2 mediated substrate transport as well as the substrate stimulated ATPase activity of these transporters. Interestingly, 9-cis-retinoic acid and ATRA (all-trans retinoic acid), both are stereoisomers of 13-cis-retinoic acid, did not have any effect on the transporters' activity. Our fluorescence anisotropy measurements revealed that 13-cis-retinoic acid, retinol and retinyl-acetate selectively increase the viscosity and packing density of the membrane. Thus, the mixed-type inhibition of both transporters by retinol and ABCG2 by 13-cis-retinoic acid may be the collective result of direct interactions of these retinoids with the substrate binding site(s) and of indirect interactions mediated by their membrane rigidifying effects.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Retinoides/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cães , Polarização de Fluorescência , Humanos , Cinética , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Especificidade por Substrato
12.
PLoS One ; 11(5): e0154489, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148973

RESUMO

The Sleeping Beauty transposon system was established as a robust and efficient method for germline transgenesis in different mammalian species. The generation of transgenic mice, rats, rabbits and swine carrying an identical Venus reporter construct delivered by transposon-mediated gene transfer enables comparative studies of gene expression in these lines of mammalian models. Whereas comparable expression patterns of the Venus reporter were found in somatic tissues, preliminary studies suggested that a striking difference in reporter expression may exist in mature spermatozoa of these species. Here we clearly show the differential expression of Venus reporter protein during spermatogenesis of the two compared species, the laboratory rabbit and mice. We provide evidence for the functionality of intercellular bridges in the male germline and genotype-independent transgenic phenotype of rabbit spermatids. Our data suggest that the reporter rabbit line may be a suitable tool to identify molecular mechanisms in testicular development, and may contribute to develop better animal models for male infertility in men.


Assuntos
Elementos de DNA Transponíveis , Genes Reporter , Células Germinativas , Animais , Animais Geneticamente Modificados , Corantes Fluorescentes/química , Masculino , Coelhos , Testículo/metabolismo
13.
Sci Rep ; 6: 24810, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117502

RESUMO

P-glycoprotein (Pgp) is an ABC transporter responsible for the ATP-dependent efflux of chemotherapeutic compounds from multidrug resistant cancer cells. Better understanding of the molecular mechanism of Pgp-mediated transport could promote rational drug design to circumvent multidrug resistance. By measuring drug binding affinity and reactivity to a conformation-sensitive antibody we show here that nucleotide binding drives Pgp from a high to a low substrate-affinity state and this switch coincides with the flip from the inward- to the outward-facing conformation. Furthermore, the outward-facing conformation survives ATP hydrolysis: the post-hydrolytic complex is stabilized by vanadate, and the slow recovery from this state requires two functional catalytic sites. The catalytically inactive double Walker A mutant is stabilized in a high substrate affinity inward-open conformation, but mutants with one intact catalytic center preserve their ability to hydrolyze ATP and to promote drug transport, suggesting that the two catalytic sites are randomly recruited for ATP hydrolysis.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico Ativo , Domínio Catalítico , Animais , Células Cultivadas , Cães , Camundongos , Ligação Proteica , Conformação Proteica
14.
15.
Eur J Pharm Sci ; 74: 27-35, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25857708

RESUMO

In vivo detection of the emergence of P-glycoprotein (Pgp) mediated multidrug resistance in tumors could be beneficial for patients treated with anticancer drugs. PET technique in combination with appropriate radiotracers could be the most convenient method for detection of Pgp function. Rhodamine derivatives are validated fluorescent probes for measurement of mitochondrial membrane potential and also Pgp function. The aim of this study was to investigate whether 2'[(18)F]-fluoroethylrhodamine B ((18)FRB) a halogenated rhodamine derivative previously synthesized for PET assessment of myocardial perfusion preserved its Pgp substrate character. ATPase assay as well as accumulation experiments carried out using Pgp(+) and Pgp(-) human gynecologic (A2780/A2780(AD) and KB-3-1/KB-V1) and a mouse fibroblast cell pairs (NIH 3T3 and NIH 3T3 MDR1) were applied to study the interaction of (18)FRB with Pgp. ATPase assay proved that (18)FRB is a high affinity substrate of Pgp. Pgp(-) cells accumulated the (18)FRB rapidly in accordance with its lipophilic character. Dissipation of the mitochondrial proton gradient by a proton ionophore CCCP decreased the accumulation of rhodamine 123 (R123) and (18)FRB into Pgp(-) cells. Pgp(+) cells exhibited very low R123 and (18)FRB accumulation (around 1-8% of the Pgp(-) cell lines) which was not sensitive to the mitochondrial proton gradient; rather it was increased by the Pgp inhibitor cyclosporine A (CsA). Based on the above data we conclude that (18)FRB is a high affinity Pgp substrate and consequently a potential PET tracer to detect multidrug resistant tumors as well as the function of physiological barriers expressing Pgp.


Assuntos
Carcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Corantes Fluorescentes/metabolismo , Neoplasias Ovarianas/metabolismo , Rodaminas/metabolismo , Neoplasias do Colo do Útero/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Animais , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Feminino , Radioisótopos de Flúor , Humanos , Imunossupressores/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Ionóforos de Próton/farmacologia , Traçadores Radioativos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodamina 123/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico
16.
Biomed Res Int ; 2014: 787365, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309926

RESUMO

Expression of multidrug pumps including P-glycoprotein (MDR1, ABCB1) in the plasma membrane of tumor cells often results in decreased intracellular accumulation of anticancer drugs causing serious impediment to successful chemotherapy. It has been shown earlier that combined treatment with UIC2 anti-Pgp monoclonal antibody (mAb) and cyclosporine A (CSA) is an effective way of blocking Pgp function. In the present work we investigated the suitability of four PET tumor diagnostic radiotracers including 2-[(18)F]fluoro-2-deoxy-D-glucose ((18)FDG), (11)C-methionine, 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT), and [(18)F]fluoroazomycin-arabinofuranoside ((18)FAZA) for in vivo follow-up of the efficacy of chemotherapy in both Pgp positive (Pgp(+)) and negative (Pgp(-)) human tumor xenograft pairs raised in CB-17 SCID mice. Pgp(+) and Pgp(-) A2780AD/A2780 human ovarian carcinoma and KB-V1/KB-3-1 human epidermoid adenocarcinoma tumor xenografts were used to study the effect of the treatment with an anticancer drug doxorubicin combined with UIC2 and CSA. The combined treatment resulted in a significant decrease of both the tumor size and the accumulation of the tumor diagnostic tracers in the Pgp(+) tumors. Our results demonstrate that (18)FDG, (18)F-FLT, (18)FAZA, and (11)C-methionine are suitable PET tracers for the diagnosis and in vivo follow-up of the efficacy of tumor chemotherapy in both Pgp(+) and Pgp(-) human tumor xenografts by miniPET.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias dos Genitais Femininos/diagnóstico por imagem , Neoplasias dos Genitais Femininos/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ensaios Antitumorais Modelo de Xenoenxerto , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Autorradiografia , Radioisótopos de Carbono , Linhagem Celular Tumoral , Didesoxinucleosídeos , Feminino , Citometria de Fluxo , Fluordesoxiglucose F18 , Seguimentos , Neoplasias dos Genitais Femininos/patologia , Humanos , Metionina , Camundongos , Camundongos SCID , Nitroimidazóis , Carga Tumoral
17.
PLoS One ; 9(9): e107875, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25238617

RESUMO

P-glycoprotein (Pgp) extrudes a large variety of chemotherapeutic drugs from the cells, causing multidrug resistance (MDR). The UIC2 monoclonal antibody recognizes human Pgp and inhibits its drug transport activity. However, this inhibition is partial, since UIC2 binds only to 10-40% of cell surface Pgps, while the rest becomes accessible to this antibody only in the presence of certain substrates or modulators (e.g. cyclosporine A (CsA)). The combined addition of UIC2 and 10 times lower concentrations of CsA than what is necessary for Pgp inhibition when the modulator is applied alone, decreased the EC50 of doxorubicin (DOX) in KB-V1 (Pgp+) cells in vitro almost to the level of KB-3-1 (Pgp-) cells. At the same time, UIC2 alone did not affect the EC50 value of DOX significantly. In xenotransplanted severe combined immunodeficient (SCID) mice co-treated with DOX, UIC2 and CsA, the average weight of Pgp+ tumors was only ∼10% of the untreated control and in 52% of these animals we could not detect tumors at all, while DOX treatment alone did not decrease the weight of Pgp+ tumors. These data were confirmed by visualizing the tumors in vivo by positron emission tomography (PET) based on their increased 18FDG accumulation. Unexpectedly, UIC2+DOX treatment also decreased the size of tumors compared to the DOX only treated animals, as opposed to the results of our in vitro cytotoxicity assays, suggesting that immunological factors are also involved in the antitumor effect of in vivo UIC2 treatment. Since UIC2 binding itself did not affect the viability of Pgp expressing cells, but it triggered in vitro cell killing by peripheral blood mononuclear cells (PBMCs), it is concluded that the impressive in vivo anti-tumor effect of the DOX-UIC2-CsA treatment is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity (ADCC).


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Antineoplásicos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Transporte Biológico , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Sinergismo Farmacológico , Humanos , Camundongos SCID
18.
Eur J Pharm Sci ; 64: 1-8, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25149126

RESUMO

2-[(18)F]fluoro-2-deoxy-d-glucose ((18)FDG) is a tumor diagnostic radiotracer of great importance in both diagnosing primary and metastatic tumors and in monitoring the efficacy of the treatment. P-glycoprotein (Pgp) is an active transporter that is often expressed in various malignancies either intrinsically or appears later upon disease progression or in response to chemotherapy. Several authors reported that the accumulation of (18)FDG in P-glycoprotein (Pgp) expressing cancer cells (Pgp(+)) and tumors is different from the accumulation of the tracer in Pgp nonexpressing (Pgp(-)) ones, therefore we investigated whether (18)FDG is a substrate or modulator of Pgp pump. Rhodamine 123 (R123) accumulation experiments and ATPase assay were used to detect whether (18)FDG is substrate for Pgp. The accumulation and efflux kinetics of (18)FDG were examined in two different human gynecologic (A2780/A2780AD and KB-3-1/KB-V1) and a mouse fibroblast (3T3 and 3T3MDR1) Pgp(+) and Pgp(-) cancer cell line pairs both in cell suspension and monolayer cultures. We found that (18)FDG and its derivatives did not affect either the R123 accumulation in Pgp(+) cells or the basal and the substrate stimulated ATPase activity of Pgp supporting that they are not substrates or modulators of the pump. Measuring the accumulation and efflux kinetics of (18)FDG in different Pgp(+) and Pgp(-) cell line pairs, we have found that the Pgp(+) cells exhibited significantly higher (p⩽0.01) (18)FDG accumulation and slightly faster (18)FDG efflux kinetics compared to their Pgp(-) counterparts. The above data support the idea that expression of Pgp may increase the energy demand of cells resulting in higher (18)FDG accumulation and faster efflux. We concluded that (18)FDG and its metabolites are not substrates of Pgp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Fluordesoxiglucose F18 , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular , Citometria de Fluxo , Fluordesoxiglucose F18/farmacocinética , Humanos , Camundongos , Células NIH 3T3 , Rodamina 123/farmacocinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA