Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 39(2): e4685, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332465

RESUMO

Biological oxidants participate in many processes in the human body. Their excessive production causes organelle damage, which may result in the accumulation of cytotoxic mediators and cell degradation and may manifest itself in various diseases. Peroxynitrite (ONOO- ), hypochlorous acid (HOCl), hydrogen peroxide (H2 O2 ), and peroxymonocarbonate (HOOCO2 - ) are important oxidants in biology, toxicology, and various pathologies. Derivatives of coumarin, containing an oxidant-sensitive boronate group, have been recently developed for the fluorescent detection of inflammatory oxidants. Here, we report the synthesis and characterization of 4-[2-(morpholin-4-yl)-2-oxoethyl]-2-oxo-2H-chromen-7-yl boronic acid (MpC-BA) as a fluorescent probe for the detection of oxidants, with better solubility in water, high stability and fast response time toward peroxynitrite and hypochlorous acid. The effectiveness of the MpC-BA probe for the detection of peroxynitrite was measured by adding bolus ONOO- or using the co-generating superoxide and nitrogen oxide system. MpC-BA is oxidized by ONOO- to 7-hydroxy-4-[2-(morpholin-4-yl)-2-oxoethyl]-2H-chromen-2-one (MpC-OH). However, peroxynitrite-specific product (MpC-H) is formed in the minor reaction pathway. MpC-OH is also yielded in the reaction of MpC-BA with HOCl, and the subsequent formation of a chlorinated MpC-OH gives a specific product for HOCl (MpC-OHCl). H2 O2 slowly oxidizes MpC-BA. However, the addition of NaHCO3 increased the MpC-OH formation rate. We conclude that MpC-BA is potentially an improved fluorescent probe detecting peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of chlorinated and reduced coumarin(s) will help identify the oxidants detected.


Assuntos
Corantes Fluorescentes , Oxidantes , Humanos , Ácido Hipocloroso , Ácido Peroxinitroso/metabolismo , Oxirredução , Cumarínicos , Morfolinas
2.
Free Radic Biol Med ; 212: 255-270, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38122872

RESUMO

Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.


Assuntos
Oxidantes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/metabolismo , Peróxido de Hidrogênio , Corantes Fluorescentes/química , Ácido Hipocloroso , Espécies Reativas de Nitrogênio/química , Inflamação
3.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630217

RESUMO

Novel fluorescent probes based on 2(1H)-quinolone skeleton containing a malonate group (Q1-Q3) were synthesized and proposed for biothiols detection. Their chemical reactivity toward thiols was compared to the reactivity of derivative having a dicyanovinyl group (Q4) as a reactive site. The detailed photophysical properties of these compounds were assessed through the determination of absorption and fluorescence spectra, fluorescence quantum yield, and fluorescence lifetime. In the presence of biothiols, an increase in the fluorescence intensity of compounds Q1-Q3 and a hypsochromic shift in their emission bands were observed. In contrast, the compound with the dicyanovinyl group (Q4) in the presence of biothiols and cyanide ion showed the quenching of fluorescence, while a fluorescence "turn on" effect was observed toward reactive sulfur species.


Assuntos
Quinolonas , Compostos de Enxofre , Domínio Catalítico , Enxofre , Compostos de Sulfidrila
4.
Free Radic Biol Med ; 179: 34-46, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923103

RESUMO

Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in addition to the major phenolic product CI-OH, the minor nitrated product CI-Bz-NO2, which is not formed by other oxidants tested or via myeloperoxidase-catalyzed oxidation/nitration. Both CI-OH and CI-Bz-NO2 products were also formed in the presence of cogenerated fluxes of nitric oxide and superoxide radical anion produced during decomposition of a SIN-1 donor. Using RAW 264.7 cells, we demonstrate the ability of the probe to report endogenously produced ONOO-via fluorescence measurements, including plate reader real time monitoring and two-photon fluorescence imaging. Liquid chromatography/mass spectrometry analyses of cell extracts and media confirmed the formation of both CI-OH and CI-Bz-NO2 in macrophages activated to produce ONOO-. We propose the use of a combination of real-time monitoring of probe oxidation using fluorimetry and fluorescence microscopy with liquid chromatography/mass spectrometry-based product identification for rigorous detection and quantitative analyses of ONOO- in biological systems.


Assuntos
Ácido Peroxinitroso , Água , Cumarínicos , Corantes Fluorescentes , Oxirredução , Superóxidos
5.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641484

RESUMO

Derivatives of coumarin, containing oxidant-sensitive boronate group, were recently developed for fluorescent detection of inflammatory oxidants. Here, we report the synthesis and the characterization of 3-(2-benzothiazolyl)-7-coumarin boronic acid pinacol ester (BC-BE) as a fluorescent probe for the detection of peroxynitrite (ONOO-), with high stability and a fast response time. The BC-BE probe hydrolyzes in phosphate buffer to 3-(2-benzothiazolyl)-7-coumarin boronic acid (BC-BA) which is stable in the solution even after a prolonged incubation time (24 h). BC-BA is slowly oxidized by H2O2 to form the phenolic product, 3-benzothiazol-2-yl-7-hydroxy-chromen-2-one (BC-OH). On the other hand, the BC-BA probe reacts rapidly with ONOO-. The ability of the BC-BA probe to detect ONOO- was measured using both authentic ONOO- and the system co-generating steady-state fluxes of O2•- and •NO. BC-BA is oxidized by ONOO- to BC-OH. However, in this reaction 3-benzothiazol-2-yl-chromen-2-one (BC-H) is formed in the minor pathway, as a peroxynitrite-specific product. BC-OH is also formed in the reaction of BC-BA with HOCl, and subsequent reaction of BC-OH with HOCl leads to the formation of a chlorinated phenolic product, which could be used as a specific product for HOCl. We conclude that BC-BA shows potential as an improved fluorescent probe for the detection of peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of oxidant-specific products will help to identify the oxidants detected.


Assuntos
Ácidos Borônicos/química , Cromonas/química , Neoplasias do Colo/metabolismo , Cumarínicos/química , Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Ácido Peroxinitroso/análise , Proliferação de Células , Neoplasias do Colo/patologia , Fluorescência , Células HT29 , Humanos
6.
Free Radic Biol Med ; 169: 24-35, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33862158

RESUMO

A new naphthalene-based boronate probe, NAB-BE, for the fluorescence-based detection of inflammatory oxidants, including peroxynitrite, hypochlorous acid, and hydrogen peroxide, is reported. The chemical reactivity and fluorescence properties of the probe and the products are described. The major, phenolic oxidation product, NAB-OH, is formed in case of all three oxidants tested. This product shows green fluorescence, with a maximum at 512 nm, and can be excited either at 340 nm or in the near infrared region (745 nm) for two-photon fluorescence imaging. Peroxynitrite is the fastest of the oxidants tested and, in addition to the phenolic product, leads to the formation of a nitrated product, NAB-NO2, which can serve as a fingerprint for peroxynitrite. The probe was applied to detect peroxynitrite in activated macrophages using fluorimetry and two-photon fluorescence microscopy, and both NAB-OH and NAB-NO2 products were detected in cell extracts by liquid chromatography-mass spectrometry. The combined use of fluorometric high-throughput analyses, fluorescence imaging, and liquid chromatography-mass spectrometry-based product identification and quantitation is proposed for most comprehensive and rigorous characterization of oxidants in biological systems.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Peróxido de Hidrogênio , Ácido Hipocloroso , Oxirredução
7.
Molecules ; 25(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354039

RESUMO

A new approach to the synthesis of selected quinolinecarbaldehydes with carbonyl groups located at C5 and/or in C7 positions is presented in this paper in conjunction with spectroscopic characterization of the products. The classical Reimer-Tiemann, Vilsmeier-Haack and Duff aldehyde synthesis methods were compared due to their importance. Computational studies were carried out to explain the preferred selectivity of the presented formylation transformations. A carbene insertion reaction based on Reimer-Tiemann methodology is presented for making 7-bromo-8-hydroxyquinoline-5-carbaldehyde. Additionally, Duff and Vilsmeier-Haack reactions were used in the double formylation of quinoline derivatives and their analogues benzo[h]quinolin-10-ol, 8-hydroxy-2-methylquinoline-5,7-dicarbaldehyde, 8-(dimethylamino) quinoline-5,7-dicarbaldehyde and 10-hydroxybenzo[h]quinoline-7,9-dicarbaldehyde. Four Schiff base derivatives of 2,6-diisopropylbenzenamine were prepared from selected quinoline-5-carbaldehydes and quinoline-7-carbaldehyde by an efficient synthesis protocol. Their properties have been characterized by a combination of several techniques: MS, HRMS, GC-MS, FTIR, electronic absorption spectroscopy and multinuclear NMR. The electrochemical properties of 8-hydroxy-quinoline-5-carbaldehyde, 6-(dimethylamino)quinoline-5-carbaldehyde and its methylated derivative were investigated, and a strong correlation between the chemical structure and obtained reduction and oxidation potentials was found. The presence of a methyl group facilitates oxidation. In contrast, the reduction potential of methylated compounds was more negative comparing to non-methylated structure. Calculations of frontier molecular orbitals supported the finding. The structures of 8-hydroxy-2-methylquinoline-5,7-dicarbaldehyde and four Schiff bases were determined by single-crystal X-ray diffraction measurements.


Assuntos
Aldeídos/síntese química , Quinolinas/síntese química , Bases de Schiff/química , Acetonitrilas/química , Aldeídos/química , Química Orgânica , Eletroquímica , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metano/análogos & derivados , Metano/química , Conformação Molecular , Oxigênio/química , Quinolinas/química , Software , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Molecules ; 24(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766294

RESUMO

New approaches to the synthesis of 4,7-dichloro-1,10-phenanthrolines and their corresponding 9H-carbazol-9-yl-, 10H-phenothiazin-10-yl- and pyrrolidin-1-yl derivatives were developed. Their properties have been characterized by a combination of several techniques: MS, HRMS, GC-MS, electronic absorption spectroscopy and multinuclear NMR in both solution and solid state including 15N CP/MAS NMR. The structures of 5-fluoro-2,9-dimethyl-4,7-di(pyrrolidin-1-yl)-1,10-phenanthroline (5d), 4,7-di(9H-carbazol-9-yl)-9-oxo-9,10-dihydro-1,10-phenanthroline-5-carbonitrile (6a) and 4,7-di(10H-phenothiazin-10-yl)-1,10-phenanthroline-5-carbonitrile (6b) were determined by single-crystal X-ray diffraction measurements. The nucleophilic substitutions of hydrogen followed by oxidation produced compounds 6a and 6b. The electrochemical properties of selected 1,10-phenanthrolines were investigated using cyclic voltammetry and compared with commercially available reference 1,10-phenanthrolin-5-amine (5l). The spatial distribution of frontier molecular orbitals of the selected compounds has been calculated by density functional theory (DFT). It was shown that potentials of reduction and oxidation were in consistence with the level of HOMO and LUMO energies.


Assuntos
Fenômenos Químicos , Técnicas de Química Sintética , Fenantrolinas/química , Análise Espectral , Modelos Moleculares , Estrutura Molecular , Fenantrolinas/síntese química
9.
Forensic Sci Int ; 266: 416-426, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27423024

RESUMO

In this study we identified three novel hydrochloride salts of cathinones 2-(pyrrolidin-1-yl)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)pentan-1-one (1a) (TH-PVP), 2-(methylamino)-1-(2-methylphenyl)-1-propanone (1b) (2-MMC) and 1-(4-chlorophenyl)-2-(methylamino)propan-1-one (1c) (4-CMC). Their properties have been examined through combinations of GC-MS, IR, NMR, electronic absorption spectroscopy and single crystal X-ray diffraction method. NMR solution spectra showed readily diagnostic H-1 and C-13 signals from methyl, N-methyl and carbonyl groups. Additionally the use of thionation and amination reactions for identification of selected cathinones was presented.


Assuntos
Alcaloides/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Alcaloides/análise , Difração de Raios X
10.
J Phys Chem B ; 119(20): 6074-80, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25915694

RESUMO

The oxidation mechanism of selected hydroxyquinoline carboxylic acids such as 8-hydroxyquinoline-7-carboxylic acid (1), the two positional isomers 2-methyl-8-hydroxyquinoline-7-carboxylic acid (3) and 2-methyl-5-hydroxyquinoline-6-carboxylic acid (4), as well as other hydroxyquinolines were studied in aprotic environment using cyclic voltammetry, controlled potential electrolysis, in situ UV-vis and IR spectroelectrochemistry, and HPLC-MS/MS techniques. IR spectroelectrochemistry showed that oxidation unexpectedly proceeds together with protonation of the starting compound. We proved that the nitrogen atom in the heterocycle of hydroxyquinolines is protonated during the apparent 0.7 electron oxidation process. This was rationalized by the autodeprotonation reaction by another two starting molecules of hydroxyquinoline, so that the overall oxidation mechanism involves two electrons and three starting molecules. Both the electrochemical and spectroelectrochemical results showed that the oxidation mechanism is not influenced by the presence of the carboxylic group in the chemical structure of hydroxyquinolines, as results from oxidation of 2,7-dimethyl-5-hydroxyquinoline (6). In the presence of a strong proton acceptor such as pyridine, the oxidation ECEC process involves two electrons and two protons per one molecule of the hydroxyquinoline derivative. The electron transfer efficiency of hydroxyquinolines in biosystems may be related to protonation of biocompounds containing nitrogen bases. Molecular orbital calculations support the experimental findings.


Assuntos
Ácidos Carboxílicos/química , Hidroxiquinolinas/química , Cromatografia Líquida de Alta Pressão , Técnicas Eletroquímicas , Eletroquímica , Elétrons , Modelos Moleculares , Oxirredução , Prótons , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
11.
Artigo em Inglês | MEDLINE | ID: mdl-24001976

RESUMO

Synthetic, spectroscopy and mechanistic aspects of preparation of selected hydroxyquinolines and their analogues or derivatives contained methoxy, fluoro, chloro, carboxylic, carbodithioic and phosphinate or dioxaphosphinane groups were elaborated. The multinuclear NMR and five single crystal X-ray characteristics of the series of quinolines have been determined. The molecular orbitals of the selected hydroxyquinolines have been calculated by density functional theory. The X-ray and NMR studies of 8-[(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)oxy]-5,7-dibromo-2-methylquinoline and 8-[(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)oxy]-5-fluoro-2-methylquinoline indicate the appearance of anomeric effect.


Assuntos
Hidroxiquinolinas/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Cristalização , Cristalografia por Raios X , Estrutura Molecular , Eletricidade Estática , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA