Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 14166-14173, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717077

RESUMO

Inorganic fullerene clusters have attracted widespread attention due to their highly symmetrical geometric structures and intrinsic electronic properties. However, cage-like clusters composed of heavy metal elements with high symmetry are rarely reported, and their synthesis is also highly challenging. In this study, we present the synthesis of a [K2(Bi@Pd12@Bi20)]4- cluster that incorporates a {Bi20} cage with pseudo-Ih symmetry, making it the largest main group metal cluster compound composed of the bismuth element to date. Magnetic characterization and theoretical calculations suggest that the spin state of the overall cluster is a quartet. Quantum chemical calculations reveal that the [Bi20]3- cluster has a similar electronic configuration to C606- and the [Bi@Pd12@Bi20]6- cluster exhibits a unique open-shell aromatic character.

2.
Phys Chem Chem Phys ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747026

RESUMO

Singlet fission (SF) compounds offer a promising avenue for improving the performance of solar cells. Using TD-DFT methods, anti-Kasha azulene derivatives that could carry out SF have been designed. For this purpose, substituted azulenes with a donor (-OH) and/or an acceptor group (-CN) have been systematically studied using the S2 ≥ 2T1 formula. We have found that -CN (-OH) substituents on electrophilic (nucleophilic) carbons result in improved SF properties when compared to azulene.

3.
Angew Chem Int Ed Engl ; 63(23): e202405059, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563771

RESUMO

We present herein the synthesis of novel pseudo-metalla-carbaporphyrinoid species (1M: M=Pd and Pt) achieved through the inner coordination of palladium(II) and platinum(II) with an acyclic N-confused tetrapyrrin analogue. Despite their tetrapyrrole frameworks being small, akin to well-known porphyrins, these species exhibit an unusually narrow HOMO-LUMO gap, resulting in an unprecedentedly low-energy absorption in the second near-infrared (NIR-II) region. Density functional theory (DFT) calculations revealed unique dπ-pπ-conjugated electronic structures involving the metal dπ-ligand pπ hybridized molecular orbitals of 1M. Magnetic circular dichroism (MCD) spectroscopy confirmed distinct electronic structures. Remarkably, the complexes feature an open-metal coordination site in the peripheral NN dipyrrin site, forming hetero-metal complexes (1Pd-BF2 and 1Pt-BF2) through boron difluoride complexation. The resulting hetero metalla-carbaporphyrinoid species displayed further redshifted NIR-II absorption, highly efficient photothermal conversion efficiencies (η; 62-65 %), and exceptional photostability. Despite the challenges associated with the theoretical and experimental assessment of dπ-pπ-conjugated metalla-aromaticity in relatively larger (more than 18π electrons) polycyclic ring systems, these organometallic planar tetrapyrrole systems could serve as potential molecular platforms for aromaticity-relevant NIR-II dyes.

4.
RSC Adv ; 13(48): 34224-34229, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38019979

RESUMO

Actinides have been known to form extremely weak homonuclear bonds with their d-type orbitals, and one should therefore expect the superposition of cyclic resonance forms containing such bonds to bring rather marginal aromatic stabilization to the system, if any. It is for this very reason that the discovery of the cyclically delocalized Th3 σ-bonding in the crystalline cluster isolated by Liddle and co-workers has sparked such vigorous discussion on the actual role of molecular aromaticity on the periphery of the periodic table. It has recently been argued that the tri-thorium ring at the heart of the cluster features considerable aromatic stabilization energy comparable to the heterocyclic π-aromatic rings such as thiophene. However, previous investigations involved highly ionized model clusters like Th3Cl64+ or Th310+ in which aromatic stabilization associated with the cyclic delocalization of charge is dramatically exaggerated. In this work we investigate the model tri-thorium clusters at different geometries and ionization states to show that cyclic delocalization of electrons in the isolated crystalline cluster may be associated with rather marginal σ-aromatic stabilization energy thus strongly suggesting its non-aromatic character.

5.
Chemistry ; 29(63): e202302303, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37553318

RESUMO

Synthetic strategies to access high-valent iridium complexes usually require use of π donating ligands bearing electronegative atoms (e. g. amide or oxide) or σ donating electropositive atoms (e. g. boryl or hydride). Besides the η5 -(methyl)cyclopentadienyl derivatives, high-valent η1 carbon-ligated iridium complexes are challenging to synthesize. To meet this challenge, this work reports the oxidation behavior of an all-carbon-ligated anionic bis(CCC-pincer) IrIII complex. Being both σ and π donating, the diaryl dipyrido-annulated N-heterocyclic carbene (dpa-NHC) IrIII complex allowed a stepwise 4e- oxidation sequence. The first 2e- oxidation led to an oxidative coupling of two adjacent aryl groups, resulting in formation of a cationic chiral IrIII complex bearing a CCCC-tetradentate ligand. A further 2e- oxidation allowed isolation of a high-valent tricationic complex with a triplet ground state. These results close a synthetic gap for carbon-ligated iridium complexes and demonstrate the electronic tuning potential of organic π ligands for unusual electronic properties.

6.
Angew Chem Int Ed Engl ; 62(19): e202216003, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36598396

RESUMO

The first 1,4-distibabenzene-1,4-diide compound [(ADC)Sb]2 (5) based on an anionic dicarbene (ADC) (ADC=PhC{N(Dipp)C}2 , Dipp=2,6-iPr2 C6 H3 ) is reported as a bordeaux-red solid. Compound 5, featuring a central six-membered C4 Sb2 ring with formally SbI atoms may be regarded as a base-stabilized cyclic bis-stibinidene in which each of the Sb atoms bears two lone-pairs of electrons. 5 undergoes 2 e-oxidation with Ph3 C[B(C6 F5 )4 ] to afford [(ADC)Sb]2 [B(C6 F5 )4 ]2 (6) as a brick-red solid. Each of the Sb atoms of 6 has an unpaired electron and a lone-pair. The broken-symmetry open-shell singlet diradical solution for (6)2+ is calculated to be 2.13 kcal mol-1 more stable than the closed-shell singlet. The diradical character of (6)2+ according to SS-CASSCF (state-specific complete active space self-consistent field) and UHF (unrestricted Hartree-Fock) methods amounts to 36 % and 39 %, respectively. Treatments of 6 with (PhE)2 yield [(ADC)Sb(EPh)]2 [B(C6 F5 )4 ]2 (7-E) (E=S or Se). Reaction of 5 with (cod)Mo(CO)4 affords [(ADC)Sb]2 Mo(CO)4 (8).

8.
J Am Chem Soc ; 144(19): 8560-8575, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35523019

RESUMO

Several fully π-conjugated macrocycles with puckered or cage-type structures were recently found to exhibit aromatic character according to both experiments and computations. We examine their electronic structures and put them in relation to 3D-aromatic molecules (e.g., closo-boranes) and to 2D-aromatic polycyclic aromatic hydrocarbons. Using qualitative theory combined with quantum chemical calculations, we find that the macrocycles explored hitherto should be described as 2D-aromatic with three-dimensional molecular structures (abbr. 2D-aromatic-in-3D) and not as truly 3D-aromatic. 3D-aromatic molecules have highly symmetric structures (or nearly so), leading to (at least) triply degenerate molecular orbitals, and for tetrahedral or octahedral molecules, an aromatic closed-shell electronic structure with 6n + 2 electrons. Conversely, 2D-aromatic-in-3D structures exhibit aromaticity that results from the fulfillment of Hückel's 4n + 2 rule for each macrocyclic path, yet their π-electron counts are coincidentally 6n + 2 numbers for macrocycles with three tethers of equal lengths. It is notable that 2D-aromatic-in-3D macrocyclic cages can be aromatic with tethers of different lengths, i.e., with π-electron counts different from 6n + 2, and they are related to naphthalene. Finally, we identify tetrahedral and cubic π-conjugated molecules that fulfill the 6n + 2 rule and exhibit significant electron delocalization. Yet, their properties resemble those of analogous compounds with electron counts that differ from 6n + 2. Thus, despite the fact that these molecules show substantial π-electron delocalization, they cannot be classified as true 3D-aromatics.


Assuntos
Elétrons , Teoria Quântica , Conformação Molecular
9.
Angew Chem Int Ed Engl ; 61(27): e202204337, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35426215

RESUMO

Very recently, Boronski et al. reported the first thorium-thorium bond in a crystalline cluster prepared under normal experimental conditions. By using a range of experimental techniques and computational models, the authors found that the isolated actinide cluster contains at its heart two paired electrons delocalized over the tri-thorium ring. The recorded Raman spectrum allegedly confirmed the existence of a σ-aromatic three-center two-electron bond. In the following we demonstrate that the experimentally observed broad inelastic scattering bands between 60 and 135 cm-1 , originally assigned by the authors to thorium-thorium vibrations, represent the combination of Th-Cl stretching and Th-Cl-Th bending modes, and they establish the existence of an unprecedented multicenter charge-shift bonding (ThCl2 )3 rather than the σ-aromatic bonding Th3 . In the light of the presented findings, the latter remains experimentally unproven and computationally questionable.

10.
Nat Commun ; 13(1): 2149, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444180

RESUMO

Understanding the structural changes taking place during the assembly of single atoms leading to the formation of atomic clusters and bulk materials remains challenging. The isolation and theoretical characterization of medium-sized clusters can shed light on the processes that occur during the transition to a solid-state structure. In this work, we synthesize and isolate a continuous 24-atom cluster Ge244-, which is characterized by X-ray diffraction analysis and Energy-dispersive X-ray spectroscopy, showing an elongated structural characteristic. Theoretical analysis reveals that electron delocalization plays a vital role in the formation and stabilization of the prolate cluster. In contrast with carbon atoms, 4 s orbitals of Ge-atoms do not easily hybridize with 4p orbitals and s-type lone-pairs can be localized with high occupancy. Thus, there are not enough electrons to form a stable symmetrical fullerene-like structure such as C24 fullerene. Three aromatic units with two [Ge9] and one [Ge6] species, connected by classical 2c-2e Ge-Ge σ-bonds, are aligned together forming three independent shielding cones and eventually causing a collapse of the global symmetry of the Ge244- cluster.

11.
Int J Mol Sci ; 22(10)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069455

RESUMO

In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide with bis-aldehyde, namely 2,2'-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Using ethanol as a reaction medium allowed the isolation of a discrete mononuclear homoleptic complex [NiLI] (1), for which its crystal structure contains three independent molecules, namely 1-I, 1-II, and 1-III, in the asymmetric unit. The doubly deprotonated ligand LI in the structure of 1 is coordinated in a cis-manner through the azomethine nitrogen atoms and the thiocarbonyl sulfur atoms. The coordination geometry around metal centers in all the three crystallographically independent molecules of 1 is best described as the seesaw structure. Interestingly, using methanol as a reaction medium in the same synthesis allowed for the isolation of a discrete mononuclear homoleptic complex [Ni(LII)2] (2), where LII is a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the reaction of LI with methanol upon coordination to the metal center under synthetic conditions. In the structure of 2, two ligands LII are coordinated in a trans-manner through the azomethine nitrogen atom and the thiocarbonyl sulfur atom, also yielding a seesaw coordination geometry around the metal center. The charge and energy decomposition scheme ETS-NOCV allows for the conclusion that both structures are stabilized by a bunch of London dispersion-driven intermolecular interactions, including predominantly N-H∙∙∙S and N-H∙∙∙O hydrogen bonds in 1 and 2, respectively; they are further augmented by less typical C-H∙∙∙X (where X = S, N, O, π), CH∙∙∙HC, π∙∙∙π stacking and the most striking, attractive long-range intermolecular C-H∙∙∙Ni preagostic interactions. The latter are found to be determined by both stabilizing Coulomb forces and an exchange-correlation contribution as revealed by the IQA energy decomposition scheme. Interestingly, the analogous long-range C-H∙∙∙S interactions are characterized by a repulsive Coulomb contribution and the prevailing attractive exchange-correlation constituent. The electron density of the delocalized bonds (EDDB) method shows that the nickel(II) atom shares only ~0.8|e| due to the σ-conjugation with the adjacent in-plane atoms, demonstrating a very weak σ-metalloaromatic character.


Assuntos
Níquel/química , Tiossemicarbazonas/química , Aldeídos/química , Compostos Azo/química , Complexos de Coordenação/química , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Solventes/química , Tiossemicarbazonas/metabolismo
12.
Chem Sci ; 12(17): 6159-6171, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33996014

RESUMO

The exact energies of the lowest singlet and triplet excited states in organic chromophores are crucial to their performance in optoelectronic devices. The possibility of utilizing singlet fission to enhance the performance of photovoltaic devices has resulted in a wide demand for tuneable, stable organic chromophores with wide S1-T1 energy gaps (>1 eV). Cibalackrot-type compounds were recently considered to have favorably positioned excited state energies for singlet fission, and they were found to have a degree of aromaticity in the lowest triplet excited state (T1). This work reports on a revised and deepened theoretical analysis taking into account the excited state Hückel-aromatic (instead of Baird-aromatic) as well as diradical characters, with the aim to design new organic chromophores based on this scaffold in a rational way starting from qualitative theory. We demonstrate that the substituent strategy can effectively adjust the spin distribution on the chromophore and thereby manipulate the excited state energy levels. Additionally, the improved understanding of the aromatic characters enables us to demonstrate a feasible design strategy to vary the excited state energy levels by tuning the number and nature of Hückel-aromatic units in the excited state. Finally, our study elucidates the complications and pitfalls of the excited state aromaticity and antiaromaticity concepts, highlighting that quantitative results from quantum chemical calculations of various aromaticity indices must be linked with qualitative theoretical analysis of the character of the excited states.

13.
Chemistry ; 27(2): 802-808, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33089913

RESUMO

The isolated-pentagon rule (IPR) is a determining structural feature that accounts for hollow fullerene stabilization and properties related to Cn (n≥60) cages. The recent characterization of an unprecedented non-IPR hydrofullerene, C2v C66 H4 , bearing two heptagons with adjacent fused-pentagon motifs, largely dismisses this feature. Herein, employing DFT calculations, the 13 C NMR spectroscopy and aromatic behavior of C2v C66 H4 are explored. The results show the presence of three π-aromatic circuits at the bottom boat section of C66 H4 , indicating the unique features of this hydrofullerene in comparison to those of pristine C60 . In addition, under specific orientations of the external field, certain π-aromatic circuits are enabled, resulting in a more aromatic fullerene than that of C60 , but lower than that of the spherical aromatic C60 6- fulleride. Notably, under a field aligned with the saturated carbon atoms, nonaromatic characteristics are exposed. This reveals that spherical-like cages can involve a complex magnetic response that heavily depends on the orientation of the applied field.

14.
Chem Commun (Camb) ; 56(83): 12522-12525, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32940297

RESUMO

Baird's rule has been applied to a large scope of organic molecular systems for rationalizing the aromaticity reversal in the lowest-lying triplet state. In this study, we demonstrate that Baird's rule can also be extended to all-metal systems with σ- and π-aromaticity.

15.
Chemistry ; 26(57): 12902, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32870531

RESUMO

Invited for the cover of this issue is Jun Zhu, Miquel Solà and co-workers at Xiamen University, Jagiellonian University and the University of Girona. The image highlights the main roles in this study: ligands, metal centers, and adaptive aromaticity. Read the full text of the article at 10.1002/chem.202001830.

16.
Chemistry ; 26(57): 12964-12971, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32519777

RESUMO

Species with adaptive aromaticity are aromatic in the ground and lowest-lying triplet excited states and they have normally intermediate singlet-triplet gaps. Few examples of compounds with adaptive aromaticity are known to date, including 16-valence-electron (16e) metallapentalenes. A sweeping search could be conducted to discover new members of this group, but efficient designs with an explicit strategy would facilitate the quest for new members of this elusive family. Density functional theory calculations and aromaticity evaluations have been performed to reveal the nature of triplet-state aromaticity in 16e metallapentalenes. Our results show that coordination of strong σ- or π-donor ligands helps achieving adaptive aromaticity of 16e metallapentalenes by means of a spin delocalization mechanism. These results have important implications for understanding the unusual properties of the organometallic adaptive aromatics, leading the way to efficient design of new compounds with tunable singlet-triplet gaps.

17.
Chemistry ; 26(57): 12987-12995, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32428288

RESUMO

Extensive experimental and theoretical investigations are reported on the nature of resonance-assisted hydrogen bonding phenomenon (RAHB) and its influence on photophysical properties of the newly designed dyes differing in donor-acceptor properties, namely ethyl N-salicylideneglycinate (1), ethyl N-(5-methoxysalicylidene)glycinate (2), ethyl N-(5-bromosalicylidene)glycinate (3) and ethyl N-(5-nitrosalicylidene)glycinate (4). All compounds are thermochromic in the solid state and they contain a typical intramolecular O-H⋅⋅⋅N hydrogen bond formed between the hydroxyl hydrogen atom and the imine nitrogen atom, yielding the enol form in the solid state. It is unveiled, that the magnitude of RAHB effect fine tunes the strength of the O-H⋅⋅⋅N bonding and accordingly the relative populations of the enol, cis-keto and trans-keto forms leading to variation of the photophysical properties of 1-4. It is determined, that the electron-withdrawing NO2 in 4 amplifies the most RAHB effect causing the breaking of the O-H⋅⋅⋅N hydrogen bond and accordingly formation of the dominant cis-keto isomer in both the solid state and EtOH. To this end, the UV/Vis spectra of 1-3 in EtOH revealed the exclusive presence of the enol form, while the prevalent contribution of the cis-keto form was found for 4. Furthermore, only compound 4 is emissive in the solid state in ambient condition due to dual emission arising from the cis-keto* and trans-keto* forms, while 2 was found to be highly emissive in EtOH. It is revealed qualitatively and quantitatively, based on the ETS-NOCV charge and energy decomposition scheme and the EDDB population-based method, that RAHB is strongly a non-local phenomenon based on electrons pumping or sucking through both the π- and σ-channels, which accordingly exerts chemical bonding changes at both the phenyl ring and predominantly a distant O-H⋅⋅⋅N area.

18.
Chemphyschem ; 21(6): 494-502, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31990431

RESUMO

It is shown herein that intuitive and text-book steric-clash based interpretation of the higher energy "in-in" xylene isomer (as arising solely from the repulsive CH⋅⋅⋅HC contact) with respect to the corresponding global-minimum "out-out" configuration (where the clashing C-H bonds are tilted out) is misleading. It is demonstrated that the two hydrogen atoms engaged in the CH⋅⋅⋅HC contact in "in-in" are involved in attractive interaction so they cannot explain the lower stability of this isomer. We have proven, based on the arsenal of modern bonding descriptors (EDDB, HOMA, NICS, FALDI, ETS-NOCV, DAFH, FAMSEC, IQA), that in order to understand the relative stability of "in-in" versus "out-out" xylenes isomers one must consider the changes in the electronic structure encompassing the entire molecules as arising from the cooperative action of hyperconjugation, aromaticity and unintuitive London dispersion plus charge delocalization based intra-molecular CH⋅⋅⋅HC interactions.

19.
J Org Chem ; 84(23): 15538-15548, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31693372

RESUMO

The fact that intramolecular resonance-assisted hydrogen bonds (RAHBs) are stronger than conventional ones is attributed to the partial delocalization of the π-electrons within the hydrogen bond (HB) motif, the so-called quasi-ring. If an aromatic ring is involved in the formation of the RAHB, previous studies have shown that there is an interplay between aromaticity and HB strength. Moreover, in 1,3-dihydroxyaryl-2-aldehydes, some of us found that the position of the quasi-ring formed by the substituents interacting through RAHB influences the strength of the H bonding, the HBs being stronger when a kinked-like structure is generated by formation of the quasi-ring. In this work, we explore this concept further by considering a set of acenes and phenacenes of different sizes with two o-hydroxyaldehyde substituents. Calculations with the CAM-B3LYP/6-311++G(d,p) + GD3B method show that for long acenes or phenacenes, once the substituent effect loses importance because quasi-rings are pulled apart far from each other, the different topologies rule the HB distances. This fact can be explained in most cases using an extended Clar's aromatic π-sextet model. In some kinked systems, however, the justification from the Clar model has to be complemented by taking into account the repulsion between hydrogen atoms. Triphenylene-like compounds with different numbers of benzene rings have been studied, finding out a very good relationship between aromaticity of the ipso- and quasi-rings with the RAHB distances. This result confirms the importance of the communication of the π-systems of the ipso- and quasi-rings.

20.
ChemistryOpen ; 8(2): 219-227, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30828509

RESUMO

In this work the relationship between the formal number of π-electrons, d-orbital conjugation topology, π-electron delocalization and aromaticity in d-block metallacycles is investigated in the context of recent findings concerning the correlation of π-HOMO topology and the magnetic aromaticity indices in these species. It is demonstrated that for π-electron rich d-metallacycles the direct link between aromaticity, the number of π-electrons and the frontier π-orbital topology does not strictly hold and for such systems it is very difficult to unambiguously associate their aromaticity with the "4n+2" (Hückel) and "4n" (Möbius) rules. It is also shown that the recently proposed electron density of delocalized bonds (EDDB) method can successfully be used not only to quantify and visualize aromaticity in such difficult cases, but also - in contrast to magnetic aromaticity descriptors - to provide a great deal of information on the real role of d-orbitals in metallacycles without the ambiguity of bookkeeping of electrons in the π-subsystem of the molecular ring. Interestingly, some of the metallacycles studied cannot be classified exclusively as Hückel or Möbius because they have a hybrid Hückel-Möbius or even quasi-aromatic nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA