Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(10): e0098724, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39212448

RESUMO

Studying viral infections necessitates well-designed cell culture models to deepen our understanding of diseases and develop effective treatments. In this study, we present a readily available ex vivo 3D co-culture model replicating the human intestinal mucosa. The model combines fully differentiated human intestinal epithelium (HIE) with human monocyte-derived macrophages (hMDMs) and faithfully mirrors the in vivo structural and organizational properties of intestinal mucosal tissues. Specifically, it mimics the lamina propria, basement membrane, and the air-exposed epithelial layer, enabling the pioneering observation of macrophage migration through the tissue to the site of viral infection. In this study, we applied the HIE-hMDMs model for the first time in viral infection studies, infecting the model with two globally significant viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human norovirus GII.4. The results demonstrate the model's capability to support the replication of both viruses and show the antiviral role of macrophages, determined by their migration to the infection site and subsequent direct contact with infected epithelial cells. In addition, we evaluated the production of cytokines and chemokines in the intestinal niche, observing an increased interleukin-8 production during infection. A parallel comparison using a classical in vitro cell line model comprising Caco-2 and THP-1 cells for SARS-CoV-2 experiments confirmed the utility of the HIE-hMDMs model in viral infection studies. Our data show that the ex vivo tissue models hold important implications for advances in virology research.IMPORTANCEThe fabrication of intricate ex vivo tissue models holds important implications for advances in virology research. The co-culture model presented here provides distinct spatial and functional attributes not found in simplified models, enabling the evaluation of macrophage dynamics under severe acute respiratory syndrome coronavirus 2 and human norovirus (HuNoV) infections in the intestine. Moreover, these models, comprised solely of primary cells, facilitate the study of difficult-to-replicate viruses such as HuNoV, which cannot be studied in cell line models, and offer the opportunity for personalized treatment evaluations using patient cells. Similar co-cultures have been established for the study of bacterial infections and different characteristics of the intestinal tissue. However, to the best of our knowledge, a similar intestinal model for the study of viral infections has not been published before.


Assuntos
Técnicas de Cocultura , Mucosa Intestinal , Macrófagos , SARS-CoV-2 , Humanos , Mucosa Intestinal/virologia , Mucosa Intestinal/citologia , SARS-CoV-2/fisiologia , Macrófagos/virologia , Norovirus/fisiologia , COVID-19/virologia , Replicação Viral , Citocinas/metabolismo , Células Epiteliais/virologia , Viroses/virologia , Células CACO-2
2.
ACS Appl Mater Interfaces ; 16(5): 5426-5437, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277775

RESUMO

Curcumin, a natural product with recognized antiviral properties, is limited in its application largely due to its poor solubility. This study presents the synthesis of water-soluble curcumin-poly(sodium 4-styrenesulfonate) (Cur-PSSNan) covalent conjugates. The antiflaviviral activity of conjugates was validated in vitro by using the Zika virus as a model. In the development of these water-soluble curcumin-containing derivatives, we used the macromolecules reported by us to also hamper viral infections. Mechanistic investigations indicated that the conjugates exhibited excellent stability and bioavailability. The curcumin and macromolecules in concerted action interact directly with virus particles and block their attachment to host cells, hampering the infection process.


Assuntos
Curcumina , Infecção por Zika virus , Zika virus , Humanos , Curcumina/farmacologia , Internalização do Vírus , Infecção por Zika virus/tratamento farmacológico , Solubilidade , Água
3.
Antiviral Res ; 219: 105731, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37838220

RESUMO

Despite the advances in contemporary medicine and availability of numerous innovative therapies, effective treatment and prevention of SARS-CoV-2 infections pose a challenge. In the search for new anti-SARS-CoV-2 drug candidates, natural products are frequently explored. Here, fifteen cyanopeptolins (CPs) were isolated from the Baltic cyanobacterium Nostoc edaphicum and tested against SARS-CoV-2. Of these depsipeptides, the Arg-containing structural variants showed the strongest inhibition of the Delta SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells. The functional assays indicated a direct interaction of the Arg-containing CP978 with the virions. CP978 also induced a significant decline in virus replication in the primary human airway epithelial cells (HAE). Of the four tested SARS-CoV-2 variants, Wuhan, Alpha, Omicron and Delta, only Wuhan was not affected by CP978. Finally, the analyses with application of confocal microscopy and with the SARS-CoV-2 pseudoviruses showed that CP978-mediated inhibition of viral infection results from the direct binding of the cyanopeptolin with the coronaviral S protein. Considering the potency of viral inhibition and the mode of action of CP978, the significance of the peptide as antiviral drug candidate should be further explored.


Assuntos
COVID-19 , Nostoc , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Mater Today Bio ; 22: 100763, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37600352

RESUMO

The battle against emerging viral infections has been uneven, as there is currently no broad-spectrum drug available to contain the spread of novel pathogens throughout the population. Consequently, the pandemic outbreak that occurred in early 2020 laid bare the almost empty state of the pandemic box. Therefore, the development of novel treatments with broad specificity has become a paramount concern in this post-pandemic era. Here, we propose copolymers of poly (sodium 2-(acrylamido)-2-methyl-1-propanesulfonate) (PAMPS) and poly (sodium 11-(acrylamido)undecanoate (AaU), both block (PAMPS75-b-PAaUn) and random (P(AMPSm-co-AaUn)) that show efficacy against a broad range of alpha and betacoronaviruses. Owing to their intricate architecture, these polymers exhibit a highly distinctive mode of action, modulating nano-mechanical properties of cells and thereby influencing viral replication. Through the employment of confocal and atomic force microscopy techniques, we discerned perturbations in actin and vimentin filaments, which correlated with modification of cellular elasticity and reduction of glycocalyx layer. Intriguingly, this process was reversible upon polymer removal from the cells. To ascertain the applicability of our findings, we assessed the efficacy and underlying mechanism of the inhibitors using fully differentiated human airway epithelial cultures, wherein near-complete abrogation of viral replication was documented. Given their mode of action, these polymers can be classified as biologically active nanomaterials that exploit a highly conserved molecular target-cellular plasticity-proffering the potential for truly broad-spectrum activity while concurrently for drug resistance development is minimal.

5.
Antiviral Res ; 217: 105676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481038

RESUMO

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world socially and economically. Despite a generation of vaccines and therapeutics to confront infection, it remains a threat. Most available antivirals target viral proteins and block their activity or function. While such an approach is considered effective and safe, finding treatments for specific viruses of concern leaves us unprepared for developed resistance and future viral pandemics of unknown origin. Here, we propose ceragenins (CSAs), synthetic amphipathic molecules designed to mimic the properties of cationic antimicrobial peptides (cAMPs), as potential broad-spectrum antivirals. We show that selected CSAs exhibit antiviral activity against SARS-CoV-2 and low-pathogenic human coronaviruses 229E, OC43, and NL63. The mechanism of action of CSAs against coronaviruses is mainly attributed to the stimulation of antiviral cytokines, such as type I interferons or IL-6. Our study provides insight into a novel immunomodulatory strategy that might play an essential role during the current pandemic and future outbreaks.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Interferon Tipo I/farmacologia , Pandemias , Replicação Viral , Imunidade
6.
Front Immunol ; 14: 1123155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287972

RESUMO

Introduction: Natural killer (NK) cells plays a pivotal role in the control of viral infections, and their function depend on the balance between their activating and inhibitory receptors. The immune dysregulation observed in COVID-19 patients was previously associated with downregulation of NK cell numbers and function, yet the mechanism of inhibition of NK cell functions and the interplay between infected cells and NK cells remain largely unknown. Methods: In this study we show that SARS-CoV-2 infection of airway epithelial cells can directly influence NK cell phenotype and functions in the infection microenvironment. NK cells were co-cultured with SARS-CoV-2 infected epithelial cells, in a direct contact with A549ACE2/TMPRSS2 cell line or in a microenvironment of the infection in a 3D ex vivo human airway epithelium (HAE) model and NK cell surface expression of a set of most important receptors (CD16, NKG2D, NKp46, DNAM-1, NKG2C, CD161, NKG2A, TIM-3, TIGIT, and PD-1) was analyzed. Results: We observed a selective, in both utilized experimental models, significant downregulation the proportion of CD161 (NKR-P1A or KLRB1) expressing NK cells, and its expression level, which was followed by a significant impairment of NK cells cytotoxicity level against K562 cells. What is more, we confirmed that SARS-CoV-2 infection upregulates the expression of the ligand for CD161 receptor, lectin-like transcript 1 (LLT1, CLEC2D or OCIL), on infected epithelial cells. LLT1 protein can be also detected not only in supernatants of SARS-CoV-2 infected A549ACE2/TMPRSS2 cells and HAE basolateral medium, but also in serum of COVID-19 patients. Finally, we proved that soluble LLT1 protein treatment of NK cells significantly reduces i) the proportion of CD161+ NK cells, ii) the ability of NK cells to control SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells and iii) the production of granzyme B by NK cells and their cytotoxicity capacity, yet not degranulation level. Conclusion: We propose a novel mechanism of SARS-CoV-2 inhibition of NK cell functions via activation of the LLT1-CD161 axis.


Assuntos
COVID-19 , Receptores de Superfície Celular , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Células Matadoras Naturais , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/metabolismo
7.
Front Immunol ; 13: 991991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275746

RESUMO

The first line of antiviral immune response in the lungs is secured by the innate immunity. Several cell types take part in this process, but airway macrophages (AMs) are among the most relevant ones. The AMs can phagocyte infected cells and activate the immune response through antigen presentation and cytokine release. However, the precise role of macrophages in the course of SARS-CoV-2 infection is still largely unknown. In this study, we aimed to evaluate the role of AMs during the SARS-CoV-2 infection using a co-culture of fully differentiated primary human airway epithelium (HAE) and human monocyte-derived macrophages (hMDMs). Our results confirmed abortive SARS-CoV-2 infection in hMDMs, and their inability to transfer the virus to epithelial cells. However, we demonstrated a striking delay in viral replication in the HAEs when hMDMs were added apically after the epithelial infection, but not when added before the inoculation or on the basolateral side of the culture. Moreover, SARS-CoV-2 inhibition by hMDMs seems to be driven by cell-to-cell contact and not by cytokine production. Together, our results show, for the first time, that the recruitment of macrophages may play an important role during the SARS-CoV-2 infection, limiting the virus replication and its spread.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Epitélio , Pulmão , Macrófagos , Citocinas , Antivirais
8.
Toxins (Basel) ; 14(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35622577

RESUMO

Even cyanobacteria from ecosystems of low biodiversity, such as the Baltic Sea, can constitute a rich source of bioactive metabolites. Potent toxins, enzyme inhibitors, and anticancer and antifungal agents were detected in both bloom-forming species and less commonly occurring cyanobacteria. In previous work on the Baltic Pseudanabaena galeata CCNP1313, the induction of apoptosis in the breast cancer cell line MCF-7 was documented. Here, the activity of the strain was further explored using human dermal fibroblasts, African green monkey kidney, cancer cell lines (T47D, HCT-8, and A549ACE2/TMPRSS2) and viruses (SARS-CoV-2, HCoV-OC43, and WNV). In the tests, extracts, chromatographic fractions, and the main components of the P. galeata CCNP1313 fractions were used. The LC-MS/MS analyses of the tested samples led to the detection of forty-five peptides. For fourteen of the new peptides, putative structures were proposed based on MS/MS spectra. Although the complex samples (i.e., extracts and chromatographic fractions) showed potent cytotoxic and antiviral activities, the effects of the isolated compounds were minor. The study confirmed the significance of P. galeata CCNP1313 as a source of metabolites with potent activity. It also illustrated the difficulties in assigning the observed biological effects to specific metabolites, especially when they are produced in minute amounts.


Assuntos
COVID-19 , Cianobactérias , Animais , Chlorocebus aethiops , Cromatografia Líquida , Ecossistema , Peptídeos/farmacologia , Extratos Vegetais , SARS-CoV-2 , Espectrometria de Massas em Tandem
9.
Cell Chem Biol ; 29(5): 774-784.e8, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35021060

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Acriflavina , Animais , Antivirais/química , Antivirais/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Pandemias
10.
Front Microbiol ; 12: 732998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745036

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a major epidemic threat since the beginning of 2020. Efforts to combat the virus and the associated coronavirus disease 2019 (COVID-19) disease are being undertaken worldwide. To facilitate the research on the virus itself, a number of surrogate systems have been developed. Here, we report the efficient production of SARS-CoV-2 virus-like particles (VLPs) in insect cells. Contrary to widely used pseudovirus particles, where only one coronaviral protein is displayed within a heterologous scaffold, developed VLPs are structurally similar to the native virus and allow for more throughput studies on the biology of the infection. On the other hand, being devoid of the viral genome, VLPs are unable to replicate and thus safe to work with. Importantly, this is the first report showing that SARS-CoV-2 VLPs can be efficiently produced in insect cells and purified using scalable affinity chromatography.

11.
Cells ; 10(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34831382

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the recently emerged virus responsible for the COVID-19 pandemic. Clinical presentation can range from asymptomatic disease and mild respiratory tract infection to severe disease with lung injury, multiorgan failure, and death. SARS-CoV-2 is the third animal coronavirus to emerge in humans in the 21st century, and coronaviruses appear to possess a unique ability to cross borders between species and infect a wide range of organisms. This is somewhat surprising as, except for the requirement of host cell receptors, cell-pathogen interactions are usually species-specific. Insights into these host-virus interactions will provide a deeper understanding of the process of SARS-CoV-2 infection and provide a means for the design and development of antiviral agents. In this study, we describe a complex analysis of SARS-CoV-2 infection using a genome-wide CRISPR-Cas9 knock-out system in HeLa cells overexpressing entry receptor angiotensin-converting enzyme 2 (ACE2). This platform allows for the identification of factors required for viral replication. This study was designed to include a high number of replicates (48 replicates; 16 biological repeats with 3 technical replicates each) to prevent data instability, remove sources of bias, and allow multifactorial bioinformatic analyses in order to study the resulting interaction network. The results obtained provide an interesting insight into the replication mechanisms of SARS-CoV-2.


Assuntos
SARS-CoV-2/fisiologia , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Sistemas CRISPR-Cas , Biologia Computacional , Genoma Humano/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , SARS-CoV-2/patogenicidade
12.
Clin Microbiol Rev ; 34(2)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33441314

RESUMO

To date, seven identified coronaviruses (CoVs) have been found to infect humans; of these, three highly pathogenic variants have emerged in the 21st century. The newest member of this group, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected at the end of 2019 in Hubei province, China. Since then, this novel coronavirus has spread worldwide, causing a pandemic; the respiratory disease caused by the virus is called coronavirus disease 2019 (COVID-19). The clinical presentation ranges from asymptomatic to mild respiratory tract infections and influenza-like illness to severe disease with accompanying lung injury, multiorgan failure, and death. Although the lungs are believed to be the site at which SARS-CoV-2 replicates, infected patients often report other symptoms, suggesting the involvement of the gastrointestinal tract, heart, cardiovascular system, kidneys, and other organs; therefore, the following question arises: is COVID-19 a respiratory or systemic disease? This review aims to summarize existing data on the replication of SARS-CoV-2 in different tissues in both patients and ex vivo models.


Assuntos
COVID-19/epidemiologia , COVID-19/fisiopatologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/fisiopatologia , SARS-CoV-2/patogenicidade , China/epidemiologia , Humanos , Pandemias
13.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33219167

RESUMO

Among seven coronaviruses that infect humans, three (severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) are associated with a severe, life-threatening respiratory infection and multiorgan failure. We previously proposed that the cationically modified chitosan N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) is a potent inhibitor of human coronavirus NL63 (HCoV-NL63). Next, we demonstrated the broad-spectrum antiviral activity of the compound, as it inhibited all low-pathogenicity human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1). Here, using in vitro and ex vivo models of human airway epithelia, we show that HTCC effectively blocks MERS-CoV and SARS-CoV-2 infection. We also confirmed the mechanism of action for these two viruses, showing that the polymer blocks the virus entry into the host cell by interaction with the S protein.IMPORTANCE The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the health care measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of an HTCC compound, previously developed by us, which may be used as a potential inhibitor of currently circulating highly pathogenic coronaviruses-SARS-CoV-2 and MERS-CoV.


Assuntos
Tratamento Farmacológico da COVID-19 , Quitosana/análogos & derivados , Infecções por Coronavirus/tratamento farmacológico , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/virologia , Quitosana/farmacologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
14.
Methods Mol Biol ; 2203: 241-261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833217

RESUMO

Coronavirus entry encompasses the initial steps of infection, from virion attachment to genome release. Advances in fluorescent labeling of viral and cellular components and confocal imaging enable broad spectrum studies on this process. Here, we describe methods for visualization of coronavirus entry into immortalized cell lines and 3D tissue culture models.


Assuntos
Coronavirus/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Microscopia Confocal/métodos , Linhagem Celular , Coronavirus/isolamento & purificação , Proteínas do Nucleocapsídeo de Coronavírus , Meios de Cultura/química , Endocitose , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Ácidos Tri-Iodobenzoicos/química , Internalização do Vírus
15.
Viruses ; 12(9)2020 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842540

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne pathogen associated with microcephaly and other congenital abnormalities in newborns as well as neurologic complications in adults. The explosive transmission of the virus in the last ten years put it in the limelight and improved our understanding of its biology and pathology. Currently, no vaccine or drugs are available to prevent or treat ZIKV infections. Knowing the potential of flaviviruses to broaden their geographic distribution, as observed for the West Nile virus, it is of importance to develop novel antiviral strategies. In this work, we identified poly(sodium 4-styrenesulfonate) (PSSNa) as a new polymeric ZIKV inhibitor. We demonstrated that PSSNa inhibits ZIKV replication in vitro both in animal and human cells, while no cytotoxicity is observed. Our mechanistic studies indicated that PSSNa acts mostly through direct binding to ZIKV particle and blocking its attachment to the host cells.


Assuntos
Antivirais/farmacologia , Polímeros/farmacologia , Ácidos Sulfônicos/farmacologia , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Humanos , Células Vero , Vírion/efeitos dos fármacos , Vírion/fisiologia , Ligação Viral/efeitos dos fármacos , Zika virus/fisiologia
16.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32434888

RESUMO

Currently, there are four seasonal coronaviruses associated with relatively mild respiratory tract disease in humans. However, there is also a plethora of animal coronaviruses which have the potential to cross the species border. This regularly results in the emergence of new viruses in humans. In 2002, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and rapidly disappeared in May 2003. In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as a possible threat to humans, but its pandemic potential so far is minimal, as human-to-human transmission is ineffective. The end of 2019 brought us information about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence, and the virus rapidly spread in 2020, causing an unprecedented pandemic. At present, studies on the virus are carried out using a surrogate system based on the immortalized simian Vero E6 cell line. This model is convenient for diagnostics, but it has serious limitations and does not allow for understanding of the biology and evolution of the virus. Here, we show that fully differentiated human airway epithelium cultures constitute an excellent model to study infection with the novel human coronavirus SARS-CoV-2. We observed efficient replication of the virus in the tissue, with maximal replication at 2 days postinfection. The virus replicated in ciliated cells and was released apically.IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged by the end of 2019 and rapidly spread in 2020. At present, it is of utmost importance to understand the biology of the virus, rapidly assess the treatment potential of existing drugs, and develop new active compounds. While some animal models for such studies are under development, most of the research is carried out in Vero E6 cells. Here, we propose fully differentiated human airway epithelium cultures as a model for studies on SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Mucosa Respiratória/virologia , Síndrome Respiratória Aguda Grave/virologia , Replicação Viral , Animais , COVID-19 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Pandemias , SARS-CoV-2 , Células Vero
17.
J Vis Exp ; (166)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33427241

RESUMO

This manuscript provides a protocol for in situ hybridization chain reaction (HCR) coupled with immunofluorescence to visualize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in cell line and three-dimensional (3D) cultures of human airway epithelium. The method allows highly specific and sensitive visualization of viral RNA by relying on HCR initiated by probe localization. Split-initiator probes help amplify the signal by fluorescently labeled amplifiers, resulting in negligible background fluorescence in confocal microscopy. Labeling amplifiers with different fluorescent dyes facilitates the simultaneous recognition of various targets. This, in turn, allows the mapping of the infection in tissues to better understand viral pathogenesis and replication at the single-cell level. Coupling this method with immunofluorescence may facilitate better understanding of host-virus interactions, including alternation of the host epigenome and immune response pathways. Owing to sensitive and specific HCR technology, this protocol can also be used as a diagnostic tool. It is also important to remember that the technique may be modified easily to enable detection of any RNA, including non-coding RNAs and RNA viruses that may emerge in the future.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , COVID-19/virologia , RNA Viral , Mucosa Respiratória/virologia , SARS-CoV-2/genética , Animais , Chlorocebus aethiops , Fluorescência , Humanos , Hibridização in Situ Fluorescente , Sistema Respiratório , Células Vero
18.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315999

RESUMO

Human coronavirus NL63 (HCoV-NL63) is a common respiratory virus that causes moderately severe infections. We have previously shown that the virus uses heparan sulfate proteoglycans (HSPGs) as the initial attachment factors, facilitating viral entry into the cell. In the present study, we show that the membrane protein (M) of HCoV-NL63 mediates this attachment. Using viruslike particles lacking the spike (S) protein, we demonstrate that binding to the cell is not S protein dependent. Furthermore, we mapped the M protein site responsible for the interaction with HSPG and confirmed its relevance using a viable virus. Importantly, in silico analysis of the region responsible for HSPG binding in different clinical isolates and the Amsterdam I strain did not exhibit any signs of cell culture adaptation.IMPORTANCE It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development.


Assuntos
Coronavirus Humano NL63/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Proteínas da Matriz Viral/metabolismo , Ligação Viral , Animais , Linhagem Celular
19.
Viruses ; 11(4)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959796

RESUMO

Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, internalization, and entry. Interestingly, careful literature analysis shows that viruses indeed bind to the cell surface via sialic acids, but there is no solid data that these moieties mediate virus entry. In our study, using a number of techniques, we showed that all three viruses are indeed able to bind to sialic acids to a different extent, but these molecules render the cells permissive only for the clinical strain of HCoV-OC43, while for others they serve only as attachment receptors. CRCoV and BCoV appear to employ human leukocyte antigen class I (HLA-1) as the entry receptor. Furthermore, we identified heparan sulfate as an alternative attachment factor, but this may be related to the cell culture adaptation, as in ex vivo conditions, it does not seem to play a significant role. Summarizing, we delineated early events during CRCoV, BCoV, and HCoV-OC43 entry and systematically studied the attachment and entry receptor utilized by these viruses.


Assuntos
Coronavirus Humano OC43/fisiologia , Coronavirus Bovino/fisiologia , Coronavirus Canino/fisiologia , Receptores Virais/análise , Ligação Viral , Células Cultivadas , Heparitina Sulfato/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ácidos Siálicos/metabolismo
20.
PLoS One ; 13(9): e0203489, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183777

RESUMO

Virus like particles (VLPs) produced by the expression of viral structural proteins can serve as versatile nanovectors or potential vaccine candidates. In this study we describe for the first time the generation of HCoV-NL63 VLPs using baculovirus system. Major structural proteins of HCoV-NL63 have been expressed in tagged or native form, and their assembly to form VLPs was evaluated. Additionally, a novel procedure for chromatography purification of HCoV-NL63 VLPs was developed. Interestingly, we show that these nanoparticles may deliver cargo and selectively transduce cells expressing the ACE2 protein such as ciliated cells of the respiratory tract. Production of a specific delivery vector is a major challenge for research concerning targeting molecules. The obtained results show that HCoV-NL63 VLPs may be efficiently produced, purified, modified and serve as a delivery platform. This study constitutes an important basis for further development of a promising viral vector displaying narrow tissue tropism.


Assuntos
Coronavirus Humano NL63 , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Peptidil Dipeptidase A/farmacologia , Mucosa Respiratória/metabolismo , Vacinas de Partículas Semelhantes a Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Linhagem Celular , Humanos , Macaca mulatta , Mucosa Respiratória/citologia , Spodoptera , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA