Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Pediatr ; 24(1): 259, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641787

RESUMO

BACKGROUND: Filiano and Kinney proposed a triple-risk model for the sudden infant death syndrome (SIDS) that involves the intersection of three risks: (1) a vulnerable infant, (2) a critical developmental period in homeostatic control, and (3) an exogenous stressor(s). The primary evidence for the role of a critical developmental period in SIDS etiology is the peak of cases around the third month of life. Independently, several studies pointed to correlation between gestational age and age at death in SIDS, but used that to assess the SIDS risk for preterm infants, ignoring further ramifications. METHODS: We did a detailed analysis of CDC data spanning over two decades (1983-2011). We focused not only on the correlation between two age variables (gestational and age at death), but also on the possibility of misdiagnosis. Also, we attempted to account for potential biases in the data induced by the ICD-9/ICD-190 transition or the "Back to Sleep" campaign. RESULTS: The peak of deaths in the third month of life, that was the main argument for the role of the critical development period, wasn't unique to SIDS. However, we confirmed an almost linear and negative correlation between gestational age and the week of death due to SIDS. This pattern (slope of correlation < 0 and significance of correlation p < 0.05) is characteristic of SIDS among all diseases analyzed in the study. CONCLUSIONS: We interpret the results as the evidence of the role of the critical development period in SIDS etiology. Possibly more attention in the future research should be put to theories that are based on homeostatic control.


Assuntos
Recém-Nascido Prematuro , Morte Súbita do Lactente , Lactente , Recém-Nascido , Humanos , Idade Gestacional , Morte Súbita do Lactente/epidemiologia , Morte Súbita do Lactente/etiologia , Sono , Fatores de Risco
2.
Acta Biochim Pol ; 70(4): 951-954, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851507

RESUMO

Assessing inorganic phosphate levels seems crucial in deciphering the biochemical state of organisms or tissues. The concentration of inorganic phosphate in blood is an order of magnitude smaller than in tissues and, on top of that, it is dynamically used to fill temporary gaps in tissues. This is the reason blood inorganic phosphate level is considered a poor proxy for tissue levels. Therefore, tissue biopsy seems to be the dominant method when assessing inorganic phosphate levels for instance in muscles. In this study, we attempted to derive a non-invasive biomarker for phosphate tissue levels. We analyzed surface electromyography signals taken during 31P spectroscopy of leg muscles in five adult pigs. We induced hypophosphatemia via 20 minutes-long hyperventilation. It turned out that the proportion of the amplitude of the low frequency band and the high frequency band is significantly (p=0.002) correlated with the relative phosphate levels. The electromyographic signal did not correlate significantly with pCO2 levels in the blood, suggesting that the changes in the signal are a result of inorganic phosphate levels, not hyperventilation. The results might lead to the development of a real-time phosphate fluctuations measurement procedure.


Assuntos
Músculos , Fosfatos , Animais , Suínos , Eletromiografia/métodos , Espectroscopia de Ressonância Magnética/métodos
3.
Animals (Basel) ; 10(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256062

RESUMO

The weaning period in piglets draws significant attention from researchers, veterinarians, and breeders. A substantial change in diet accompanied by enormous stress has health and welfare implications (abnormal feeding intake, infections, umbilical lesions, etc.). While the parameters like optimal age or weight for the weaning have been studied extensively, relatively less attention has been devoted to the study of stress effects in the piglets' biochemistry. As one of the effects of stress is hyperventilation, a gasometric analysis supported by measurements of hypoxia biomarkers was conducted. Piglets blood and urine, one day and seven days before and one day and seven days after the weaning, were tested. There was no evidence of hyperventilation, but phosphaturia and hypophosphatemia were observed one and seven days postweaning, respectively. A statistical analysis across the population also pointed to minor tissue hypoxia. Our work contributes to an understanding of biochemical dynamics and helps in the interpretation of physiological changes observed in piglets in this critical period.

4.
PeerJ ; 8: e9548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728498

RESUMO

BACKGROUND: Since the outbreak of the COVID-19 pandemic, multiple efforts of modelling of the geo-temporal transmissibility of the virus have been undertaken, but none describes the pandemic spread at the global level. The aim of this research is to provide a high-resolution global model of the pandemic that overcomes the problem of biased country-level data on the number of infected cases. To achieve this we propose a novel SIR-type metapopulation transmission model and a set of analytically derived model parameters. We used them to perform a simulation of the disease spread with help of the Global Epidemic and Mobility (GLEAM) framework embedding actual population densities, commute patterns and long-range travel networks. The simulation starts on 17 November 2019 with the index case (presymptomatic, yet infectious) in Wuhan, China, and results in an accurate prediction of the number of diagnosed cases after 154 days in multiple countries across five continents. In addition, the model outcome shows high compliance with the results of a random screening test conducted on pregnant women in the New York area. METHODS: We have built a modified SIR metapopulation transmission model and parameterized it analytically either by setting the values of the parameters based on the literature, or by assuming their plausible values. We compared our results with the number of diagnosed cases in twenty selected countries, ones which provide reliable statistics but differ substantially in terms of strength and speed of undertaken Non-Drug Interventions. The obtained 95% confidence intervals for the predictions are in agreement with the empirical data. RESULTS: The parameters that successfully model the pandemic are: the basic reproduction number R 0, 4.4; a latent non-infectious period of 1.1. days followed by 4.6 days of the presymptomatic infectious period; the probability of developing severe symptoms, 0.01; the probability of being diagnosed when presenting severe symptoms of 0.6; the probability of diagnosis for cases with mild symptoms or asymptomatic, 0.001. DISCUSSION: Parameters that successfully reproduce the observed number of cases indicate that both R 0 and the prevalence of the virus might be underestimated. This is in concordance with the newest research on undocumented COVID-19 cases. Consequently, the actual mortality rate is putatively lower than estimated. Confirmation of the pandemic characteristic by further refinement of the model and screening tests is crucial for developing an effective strategy for the global epidemiological crisis.

5.
Elife ; 92020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32469313

RESUMO

Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.


Assuntos
Adenosina/genética , Plasmodium falciparum/genética , Biossíntese de Proteínas/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Adenosina/metabolismo , Células Cultivadas , Eritrócitos , Fibroblastos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Polímeros/metabolismo , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
6.
Nat Commun ; 10(1): 5774, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852903

RESUMO

Translation initiation is a major rate-limiting step for protein synthesis. However, recent studies strongly suggest that the efficiency of protein synthesis is additionally regulated by multiple factors that impact the elongation phase. To assess the influence of early elongation on protein synthesis, we employed a library of more than 250,000 reporters combined with in vitro and in vivo protein expression assays. Here we report that the identity of the amino acids encoded by codons 3 to 5 impact protein yield. This effect is independent of tRNA abundance, translation initiation efficiency, or overall mRNA structure. Single-molecule measurements of translation kinetics revealed pausing of the ribosome and aborted protein synthesis on codons 4 and 5 of distinct amino acid and nucleotide compositions. Finally, introduction of preferred sequence motifs only at specific codon positions improves protein synthesis efficiency for recombinant proteins. Collectively, our data underscore the critical role of early elongation events in translational control of gene expression.


Assuntos
Códon/genética , Elongação Traducional da Cadeia Peptídica/genética , Ribossomos/metabolismo , Aminoácidos/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Biblioteca Gênica , Genes Reporter/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Nucleotídeos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Proteínas RGS/genética , Proteínas RGS/metabolismo , RNA de Transferência/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula
7.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31742586

RESUMO

The cytotoxic effect of 5-fluorouracil (5-FU) on yeast cells is thought to be mainly via a misincorporation of fluoropyrimidines into both RNA and DNA, not only DNA damage via inhibition of thymidylate synthase (TYMS) by fluorodeoxyuridine monophosphate (FdUMP). However, some studies on Saccharomyces cerevisiae show a drastic decrease in ATP concentration under oxidative stress, together with a decrease in concentration of other tri- and diphosphates. This raises a question if hydrolysis of 5-fluoro-2-deoxyuridine diphosphate (FdUDP) under oxidative stress could not lead to the presence of FdUMP and the activation of so-called 'thymine-less death' route. We attempted to answer this question with in silico modeling of 5-FU metabolic pathways, based on new experimental results, where the stages of intracellular metabolism of 5-FU in Saccharomyces cerevisiae were tracked by a combination of 19F and 31P NMR spectroscopic study. We have identified 5-FU, its nucleosides and nucleotides, and subsequent di- and/or triphosphates. Additionally, another wide 19F signal, assigned to fluorinated unstructured short RNA, has been also identified in the spectra. The concentration of individual metabolites was found to vary substantially within hours, however, the initial steady-state was preserved only for an hour, until the ATP concentration dropped by a half, which was monitored independently via 31P NMR spectra. After that, the catabolic process leading from triphosphates through monophosphates and nucleosides back to 5-FU was observed. These results imply careful design and interpretation of studies in 5-FU metabolism in yeast.


Assuntos
Trifosfato de Adenosina/metabolismo , Simulação por Computador , Fluoruracila/metabolismo , Ressonância Magnética Nuclear Biomolecular , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/genética , Saccharomyces cerevisiae/genética
8.
IEEE/ACM Trans Comput Biol Bioinform ; 15(5): 1571-1578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28541905

RESUMO

BACKGROUND: Microbial communities from environmental samples show great diversity as bacteria quickly responds to changes in their ecosystems. To assess the scenario of the actual changes, metagenomics experiments aimed at sequencing genomic DNA from such samples are performed. These new obtained sequences together with already known are used to infer phylogenetic trees assessing the taxonomic groups the species with these genes belong to. Here, we propose the first approach to the gene-species assignment problem by using reconciliation with horizontal gene transfer. RESULTS: We propose efficient algorithms that search for optimal gene-species mappings taking into account gene duplication, loss and transfer events under two tractable models of HGT reconciliation. CONCLUSIONS: We calculate both the optimal cost and all possible optimal scenarios. Furthermore as the number of optimal reconstructions can be large, we use a Monte-Carlo method for the inference of approximate distributions of gene-species assignments. We demonstrate the applicability on empirical and simulated datasets.


Assuntos
Transferência Genética Horizontal/genética , Metagenômica/métodos , Modelos Genéticos , Filogenia , Genes Bacterianos/genética , Methanobrevibacter/genética
9.
Sci Rep ; 7(1): 14884, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097662

RESUMO

MicroRNAs are well known regulators of mRNA stability and translation. However, the magnitude of both translational repression and mRNA decay induced by miRNA binding varies greatly between miRNA targets. This can be the result of cis and trans factors that affect miRNA binding or action. We set out to address this issue by studying how various mRNA characteristics affect miRNA-mediated repression. Using a dual luciferase reporter system, we systematically analyzed the ability of selected mRNA elements to modulate miRNA-mediated repression. We found that changing the 3'UTR of a miRNA-targeted reporter modulates translational repression by affecting the translation efficiency. This 3'UTR dependent modulation can be further altered by changing the codon-optimality or 5'UTR of the luciferase reporter. We observed maximal repression with intermediate codon optimality and weak repression with very high or low codon optimality. Analysis of ribosome profiling and RNA-seq data for endogenous miRNA targets revealed translation efficiency as a key determinant of the magnitude of miRNA-mediated translational repression. Messages with high translation efficiency were more robustly repressed. Together our results reveal modulation of miRNA-mediated repression by characteristics and features of the 5'UTR, CDS and 3'UTR.


Assuntos
MicroRNAs/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Linhagem Celular , Códon/genética , Códon/metabolismo , Regulação para Baixo , Drosophila , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
10.
PeerJ ; 5: e3635, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828247

RESUMO

BACKGROUND: An exceptionally thick biofilm covers walls of ancient gold and arsenic Zloty Stok mine (Poland) in the apparent absence of organic sources of energy. METHODS AND RESULTS: We have characterized this microbial community using culture-dependent and independent methods. We sequenced amplicons of the 16S rRNA gene obtained using generic primers and additional primers targeted at Archaea and Actinobacteria separately. Also, we have cultured numerous isolates from the biofilm on different media under aerobic and anaerobic conditions. We discovered very high biodiversity, and no single taxonomic group was dominant. The majority of almost 4,000 OTUs were classified above genus level indicating presence of novel species. Elemental analysis, performed using SEM-EDS and X-ray, of biofilm samples showed that carbon, sulphur and oxygen were not evenly distributed in the biofilm and that their presence is highly correlated. However, the distribution of arsenic and iron was more flat, and numerous intrusions of elemental silver and platinum were noted, indicating that microorganisms play a key role in releasing these elements from the rock. CONCLUSIONS: Altogether, the picture obtained throughout this study shows a very rich, complex and interdependent system of rock biofilm. The chemical heterogeneity of biofilm is a likely explanation as to why this oligotrophic environment is capable of supporting such high microbial diversity.

11.
BMC Med Genet ; 18(1): 65, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28595636

RESUMO

BACKGROUND: The thalassemia syndromes are classified according to the globin chain or chains whose production is affected. ß-thalassemias are caused by point mutations or, more rarely, deletions or insertions of a few nucleotides in the ß-globin gene or its immediate flanking sequences. These mutations interfere with the gene function either at the transcriptional, translational or posttranslational level. METHODS: Two cases of Polish patients with hereditary hemolytic anemia suspected of thalassemia were studied. DNA sequencing and mRNA quantification were performed. Stable human cell lines which express wild-type HBB and mutated versions were used to verify that detected mutation are responsible for mRNA degradation. RESULTS: We identified two different frameshift mutations positioned in the third exon of HBB. Both patients harboring these mutations present the clinical phenotype of thalassemia intermedia and showed dominant pattern of inheritance. In both cases the mutations do not generate premature stop codon. Instead, slightly longer protein with unnatural C-terminus could be produced. Interestingly, although detected mutations are not expected to induce NMD, the mutant version of mRNA is not detectable. Restoring of the open reading frame brought back the RNA to that of the wild-type level. CONCLUSION: Our results show that a lack of natural stop codon due to the frameshift in exon 3 of ß-globin gene causes rapid degradation of its mRNA and indicate existence of novel surveillance pathway.


Assuntos
Mutação da Fase de Leitura , Estabilidade de RNA/genética , Globinas beta/genética , Talassemia beta/genética , Linhagem Celular , Criança , Análise Mutacional de DNA , Éxons , Humanos , Masculino , Polônia
12.
Redox Rep ; 22(5): 210-217, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27198857

RESUMO

OBJECTIVE: Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. METHODS: The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. RESULTS: Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. DISCUSSION: The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.


Assuntos
Eletroquímica/métodos , Artéria Femoral/fisiologia , Veia Femoral/fisiologia , Animais , Eletroquímica/instrumentação , Feminino , Oxirredução , Fluxo Sanguíneo Regional/fisiologia , Processamento de Sinais Assistido por Computador , Suínos , Análise de Ondaletas
13.
Appl Microbiol Biotechnol ; 100(22): 9605-9617, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27687992

RESUMO

Understanding the nature of mucus-microbe interactions will provide important information that can help to elucidate the mechanisms underlying probiotic adhesion. This study focused on the adhesive properties of the Lactococcus lactis subsp. cremoris IBB477 strain, previously shown to persist in the gastrointestinal tract of germ-free rats. The shear flow-induced detachment of L. lactis cells was investigated under laminar flow conditions. Such a dynamic approach demonstrated increased adhesion to bare and mucin-coated polystyrene for IBB477, compared to that observed for the MG1820 control strain. To identify potential genetic determinants giving adhesive properties to IBB477, the improved high-quality draft genome sequence comprising chromosome and five plasmids was obtained and analysed. The number of putative adhesion proteins was determined on the basis of surface/extracellular localisation and/or the presence of adhesion domains. To identify proteins essential for the IBB477 specific adhesion property, nine deletion mutants in chromosomal genes have been constructed and analysed using adhesion tests on bare polystyrene as well as mucin-, fibronectin- or collagen IV-coated polystyrene plates in comparison to the wild-type strain. These experiments demonstrated that gene AJ89_07570 encoding a protein containing DUF285, MucBP and four Big_3 domains is involved in adhesion to bare and mucin-coated polystyrene. To summarise, in the present work, we characterised the adhesion of IBB477 under laminar flow conditions; identified the putative adherence factors present in IBB477, which is the first L. lactis strain exhibiting adhesive and mucoadhesive properties to be sequenced and demonstrated that one of the proteins containing adhesion domains contributes to adhesion.


Assuntos
Aderência Bacteriana , Lactococcus lactis/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Deleção de Genes
14.
BMC Genomics ; 17(1): 625, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519859

RESUMO

BACKGROUND: To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). RESULTS: Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 µM Zn, no change at 0.5 µM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 µM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". CONCLUSIONS: In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.


Assuntos
Adenosina Trifosfatases/metabolismo , Solanum lycopersicum/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/genética , Cádmio/metabolismo , Crioultramicrotomia , Fluoresceínas/química , Ferro/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/genética , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Zinco/química
15.
Sci Adv ; 1(6)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26322332

RESUMO

Regulation of gene expression involves a wide array of cellular mechanisms that control the abundance of the RNA or protein products of that gene. Here we describe a gene-regulatory mechanism that is based on poly(A) tracks that stall the translation apparatus. We show that creating longer or shorter runs of adenosine nucleotides, without changes in the amino acid sequence, alters the protein output and the stability of mRNA. Sometimes these changes result in the production of an alternative "frame-shifted" protein product. These observations are corroborated using reporter constructs and in the context of recombinant gene sequences. Approximately two percent of genes in the human genome may be subject to this uncharacterized, yet fundamental form of gene regulation. The potential pool of regulated genes encodes many proteins involved in nucleic acid binding. We hypothesize that the genes we identify are part of a large network whose expression is fine-tuned by poly(A)-tracks, and we provide a mechanism through which synonymous mutations may influence gene expression in pathological states.

16.
PLoS One ; 10(7): e0132683, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26172952

RESUMO

Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.


Assuntos
Anexinas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Anexinas/genética , Clorofila/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Estresse Oxidativo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico , Xantofilas/metabolismo
17.
Front Microbiol ; 6: 694, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217325

RESUMO

Methanogenic Archaea produce approximately one billion tons of methane annually, but their biology remains largely unknown. This is partially due to the large phylogenetic and phenotypic diversity of this group of organisms, which inhabit various anoxic environments including peatlands, freshwater sediments, landfills, anaerobic digesters and the intestinal tracts of ruminants. Research is also hampered by the inability to cultivate methanogenic Archaea. Therefore, biodiversity studies have relied on the use of 16S rRNA and mcrA [encoding the α subunit of the methyl coenzyme M (methyl-CoM) reductase] genes as molecular markers for the detection and phylogenetic analysis of methanogens. Here, we describe four novel molecular markers that should prove useful in the detailed analysis of methanogenic consortia, with a special focus on methylotrophic methanogens. We have developed and validated sets of degenerate PCR primers for the amplification of genes encoding key enzymes involved in methanogenesis: mcrB and mcrG (encoding ß and γ subunits of the methyl-CoM reductase, involved in the conversion of methyl-CoM to methane), mtaB (encoding methanol-5-hydroxybenzimidazolylcobamide Co-methyltransferase, catalyzing the conversion of methanol to methyl-CoM) and mtbA (encoding methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase, involved in the conversion of mono-, di- and trimethylamine into methyl-CoM). The sensitivity of these primers was verified by high-throughput sequencing of PCR products amplified from DNA isolated from microorganisms present in anaerobic digesters. The selectivity of the markers was analyzed using phylogenetic methods. Our results indicate that the selected markers and the PCR primer sets can be used as specific tools for in-depth diversity analyses of methanogenic consortia.

18.
Gene ; 573(2): 310-20, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26210809

RESUMO

The kaeA(KAE1) (suDpro) gene, which was identified in Aspergillus nidulans as a suppressor of proline auxotrophic mutations, encodes the orthologue of Saccharomyces cerevisiae Kae1p, a member of the evolutionarily conserved KEOPS/EKC (Kinase, Endopeptidase and Other Proteins of Small size/Endopeptidase-like and Kinase associated to transcribed Chromatin) complex. In yeast, this complex has been shown to be involved in tRNA modification, transcription, and genome maintenance. In A. nidulans, mutations in kaeA result in several phenotypic effects, the derepression of arginine catabolism genes, and changes in the expression levels of several others, including genes involved in amino acid and siderophore metabolism, sulfate transport, carbon/energy metabolism, translation, and transcription regulation, such as rcoA(TUP1), which encodes the global transcriptional corepressor.


Assuntos
Arginina/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/fisiologia , Sequência de Aminoácidos , Aspergillus nidulans/metabolismo , Sequência de Bases , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Pleiotropia Genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Complexos Multiproteicos/fisiologia , Mutação
19.
PLoS One ; 10(5): e0128008, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000448

RESUMO

Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.


Assuntos
Beta vulgaris/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Metano/biossíntese , Methanomicrobiales/metabolismo , Melaço , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA