Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 151: 113124, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594709

RESUMO

The substrate-analog furin inhibitor MI-1851 can suppress the cleavage of SARS-CoV-2 spike protein and consequently produces significant antiviral effect on infected human airway epithelial cells. In this study, the interaction of inhibitor MI-1851 was examined with human serum albumin using fluorescence spectroscopy and ultrafiltration techniques. Furthermore, the impacts of MI-1851 on human microsomal hepatic cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 activities were assessed based on fluorometric assays. The inhibitory action was also examined on human recombinant CYP3A4 enzyme and on hepatocytes. In addition, microsomal stability (60 min) and cytotoxicity were tested as well. MI-1851 showed no relevant interaction with human serum albumin and was significantly depleted by human microsomes. Furthermore, it did not inhibit CYP1A2, 2C9, 2C19 and 2D6 enzymes. In human hepatocytes, CYP3A4 was significantly suppressed by MI-1851 and weak inhibition was noticed in regard to human microsomes and human recombinant CYP3A4. Finally, MI-1851 did not impair the viability and the oxidative status of primary human hepatocytes (up to 100 µM concentration). Based on these observations, furin inhibitor MI-1851 appears to be potential drug candidates in the treatment of COVID-19, due to the involvement of furin in S protein priming and thus activation of the pandemic SARS-CoV-2.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Furina , Humanos , Albuminas/farmacologia , Tratamento Farmacológico da COVID-19 , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Furina/antagonistas & inibidores , Furina/metabolismo , Furina/farmacologia , Microssomos Hepáticos , SARS-CoV-2/efeitos dos fármacos , Albumina Sérica Humana/metabolismo , Glicoproteína da Espícula de Coronavírus
2.
Vet Sci ; 9(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448654

RESUMO

In vitro models of animals vulnerable to SARS-CoV-2 infection can support the characterization of effective antiviral drugs, such as synthetic inhibitors of the transmembrane protease serine 2 (TMPRSS2). Changes in cytochrome P450 (CYP) 1A2 activities in the presence of the potential TMPRSS2/matriptase inhibitors (MI) were measured using fluorometric and luminescent assays. Furthermore, the cytotoxicity of these inhibitors was evaluated using the MTS method. In addition, 60 min-long microsomal stability assays were performed using an UPLC-MS/MS procedure to elucidate depletion rates of the inhibitors. CYP1A2 was influenced significantly by MI-463 and MI-1900 in rat microsomes, by MI-432 and MI-482 in beagle microsomes, and by MI-432, MI-463, MI-482, and MI-1900 in cynomolgus monkey microsomes. The IC50 values in monkey microsomes were 1.30 ± 0.14 µM, 2.4 ± 1.4 µM, 0.21 ± 0.09 µM, and 1.1 ± 0.8 µM for inhibitors MI-432, MI-463, MI-482, and MI-1900, respectively. The depletion rates of the parent compounds were lower than 50%, independently of the investigated animal species. The host cell factor TMPRSS2 is of key importance for the cross-species spread of SARS-CoV-2. Studies of the in vitro biotransformation of TMPRSS2 inhibitors provide additional information for the development of new antiviral drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA