Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nutrients ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931195

RESUMO

Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling.


Assuntos
Transição Epitelial-Mesenquimal , Metaloproteinase 9 da Matriz , Metástase Neoplásica , Receptores Acoplados a Proteínas G , Edulcorantes , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Edulcorantes/farmacologia , Linhagem Celular Tumoral , Metaloproteinase 9 da Matriz/metabolismo , Glicosilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fenótipo , Animais , Paladar/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neuraminidase
2.
Cells ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534324

RESUMO

Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.


Assuntos
Canabinoides , Neoplasias , Agonistas de Receptores de Canabinoides/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Vimentina/metabolismo , Ligantes , Glicosilação , Neuraminidase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canabinoides/farmacologia , Transição Epitelial-Mesenquimal , Caderinas/metabolismo
3.
Curr Probl Cardiol ; 49(1 Pt C): 102106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37741599

RESUMO

Postoperative atrial fibrillation (POAF) is a common complication after cardiac surgery, increasing the risk for adverse outcomes such as perioperative and long-term mortality, stroke, myocardial infarction, and other thromboembolic events. Epigenetic biomarkers show promise as prognostic tools for POAF. Epigenetic changes, such as DNA methylation, histone modification, and microRNAs (miRNA), can result in altered gene expression and the development of various pathological conditions. This systematic review aims to present the current literature on the association between various epigenetic markers and the development of POAF following cardiac surgery. Here, an electronic literature search was performed using MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and Google Scholar to identify studies that reported the role of epigenetic markers in the development of POAF. Five of the 6 studies focused on miRNAs and their association with POAF. In POAF patients, the expression of miR-1 and miR-483-5p were upregulated in the right atrial appendage (RAA), while the levels of miR-133A, miR-208a, miR-23a, miR-26a, miR-29a, miR-29b, and miR-29c were decreased in the RAA and venous blood. One study examined cytosines followed by guanines (CpGs) as DNA methylation markers. Across all studies, 488 human subjects who had undergone cardiac surgery were investigated, and 195 subjects (39.9%) developed new-onset POAF. The current literature suggests that miRNAs may play a role in predicting the development of atrial fibrillation after cardiac surgery. However, more robust clinical data are required to justify their role in routine clinical practice.


Assuntos
Fibrilação Atrial , Procedimentos Cirúrgicos Cardíacos , MicroRNAs , Humanos , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Epigênese Genética , MicroRNAs/genética , Prognóstico , Fatores de Risco
4.
Cells ; 12(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067195

RESUMO

Surgery-induced tumor growth acceleration and synchronous metastatic growth promotion have been observed for decades. Surgery-induced wound healing, orchestrated through growth factors, chemokines, and cytokines, can negatively impact patients harboring residual or metastatic disease. We provide detailed clinical evidence of this process in surgical breast, prostate, and colorectal cancer patients. Plasma samples were analyzed from 68 cancer patients who had not received treatment before surgery or adjuvant therapy until at least four weeks post-surgery. The levels of plasma cytokines, chemokines, and growth factors were simultaneously quantified and profiled using multiplexed immunoassays for eight time points sampled per patient. The immunologic processes are induced immediately after surgery in patients, characterized by a drastic short-term shift in the expression levels of pro-inflammatory and angiogenic molecules and cytokines. A rapid and significant spike in circulating plasma levels of hepatocyte growth factor (HGF), interleukin-6 (IL-6), placental growth factor (PLGF), and matrix metalloproteinase-9 (MMP-9) after surgery was noted. The rise in these molecules was concomitant with a significant drop in transforming growth factor-ß1 (TGF-ß1), platelet-derived growth factor (PDGF-AB/BB), insulin-like growth factor-1 (IGF-1), and monocyte chemoattractant protein-2 (MCP-2). If not earlier, each plasma analyte was normalized to baseline levels within 1-2 weeks after surgery, suggesting that surgical intervention alone was responsible for these effects. The effects of surgical tumor removal on disrupting the pro-inflammatory and angiogenic plasma profiles of cancer patients provide evidence for potentiating malignant progression. Our findings indicate a narrow therapeutic window of opportunity after surgery to prevent disease recurrence.


Assuntos
Neoplasias Colorretais , Neoplasias da Próstata , Masculino , Humanos , Fator de Crescimento Placentário , Recidiva Local de Neoplasia , Quimiocinas , Neoplasias da Próstata/cirurgia , Neoplasias Colorretais/patologia
5.
Viruses ; 15(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896856

RESUMO

Mutations and the glycosylation of epitopes can convert immunogenic epitopes into non-immunogenic ones via natural selection or evolutionary pressure, thereby decreasing their sensitivity to neutralizing antibodies. Based on Thomas Francis's theory, memory B and T cells induced during primary infections or vaccination will freeze the new mutated epitopes specific to naïve B and T cells from the repertoire. On this basis, some researchers argue that the current vaccines derived from the previous strains of the SARS-CoV-2 virus do not increase immunity and may also prevent the immune response against new epitopes. However, evidence shows that even if the binding affinity is reduced, the previous antibodies or T cell receptors (TCRs) can still bind to this new epitope of the Beta, Gamma, and Delta variant if their concentration is high enough (from a booster injection) and neutralize the virus. This paper presents some convincing immunological reasons that may challenge this theory and argue for the continuation of universal vaccination to prevent further mutations of the SARS-CoV-2 virus. Simultaneously, the information presented can be used to develop vaccines that target novel epitopes or create new recombinant drugs that do not lose their effectiveness when the virus mutates.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos , Polissacarídeos , Glicoproteína da Espícula de Coronavírus/genética
6.
Biomedicines ; 11(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37626639

RESUMO

Our understanding of angiogenesis has significantly expanded over the past five decades. More recently, research has focused on this process at a more molecular level, looking at it through the signaling pathways that activate it and its non-direct downstream effects. This review discusses current findings in molecular angiogenesis, focusing on its impact on the immune system. Moreover, the impairment of this process in cancer progression and metastasis is highlighted, and current anti-angiogenic treatments and their effects on tumor growth are discussed.

7.
Cancers (Basel) ; 15(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37444578

RESUMO

Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.

8.
Cells ; 12(8)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190108

RESUMO

Angiogenesis is the physiological process of developing new blood vessels to facilitate the delivery of oxygen and nutrients to meet the functional demands of growing tissues. It also plays a vital role in the development of neoplastic disorders. Pentoxifylline (PTX) is a vasoactive synthetic methyl xanthine derivative used for decades to manage chronic occlusive vascular disorders. Recently, it has been proposed that PTX might have an inhibitory effect on the angiogenesis process. Here, we reviewed the modulatory effects of PTX on angiogenesis and its potential benefits in the clinical setting. Twenty-two studies met the inclusion and exclusion criteria. While sixteen studies demonstrated that pentoxifylline had an antiangiogenic effect, four suggested it had a proangiogenic effect, and two other studies showed it did not affect angiogenesis. All studies were either in vivo animal studies or in vitro animal and human cell models. Our findings suggest that pentoxifylline may affect the angiogenic process in experimental models. However, there is insufficient evidence to establish its role as an anti-angiogenesis agent in the clinical setting. These gaps in our knowledge regarding how pentoxifylline is implicated in host-biased metabolically taxing angiogenic switch may be via its adenosine A2BAR G protein-coupled receptor (GPCR) mechanism. GPCR receptors reinforce the importance of research to understand the mechanistic action of these drugs on the body as promising metabolic candidates. The specific mechanisms and details of the effects of pentoxifylline on host metabolism and energy homeostasis remain to be elucidated.


Assuntos
Neoplasias , Pentoxifilina , Animais , Humanos , Pentoxifilina/farmacologia , Adenosina
9.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174732

RESUMO

We discovered a novel therapeutic target critical for SARS-CoV-2, cellular infectivity and the induction of the cytokine release syndrome. Here, we show that the mammalian enzyme neuraminidase-1 (Neu-1) is part of a highly conserved signaling platform that regulates the dimerization and activation of the ACE2 receptors and the Toll-like receptors (TLRs) implicated in the cytokine release syndrome (CRS). Activated Neu-1 cleaves glycosylated residues that provide a steric hindrance to both ACE2 and TLR dimerization, a process critical to both viral attachment to the receptor and entry into the cell and TLR activation. Blocking Neu-1 inhibited ACE2 receptor dimerization and internalization, TLR dimerization and activation, and the expression of several key inflammatory molecules implicated in the CRS and death from ARDS. Treatments that target Neu-1 are predicted to be highly effective against infection with SARS-CoV-2, given the central role played by this enzyme in viral cellular entry and the induction of the CRS.


Assuntos
COVID-19 , Animais , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2 , Síndrome da Liberação de Citocina/tratamento farmacológico , Receptores Virais/metabolismo , Mamíferos/metabolismo
10.
Biomolecules ; 13(5)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238677

RESUMO

Since the discovery of insulin over 100 years ago, our understanding of the insulin signaling pathway has greatly expanded [...].


Assuntos
Receptor de Insulina , Transdução de Sinais , Receptor de Insulina/metabolismo , Insulina/metabolismo
11.
Biomolecules ; 13(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830687

RESUMO

Epigenetic reprogramming predicts the long-term functional health effects of health-related metabolic disease. This epigenetic reprogramming is activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The epigenetic and environmental changes involve a roadmap of epigenetic networking, such as dietary components and exercise on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, which are paramount to establishing youthful cell type and health. Nutrition and exercise are among the most well-known environmental epigenetic factors influencing the proper developmental and functional lifestyle, with potential beneficial or detrimental effects on health status. The diet and exercise strategies applied from conception could represent an innovative epigenetic target for preventing and treating human diseases. Here, we describe the potential role of diet and exercise as therapeutic epigenetic strategies for health and diseases, highlighting putative future perspectives in this field.


Assuntos
Epigênese Genética , Doenças Metabólicas , Gravidez , Feminino , Humanos , Dieta , Exercício Físico , Doenças Metabólicas/metabolismo , Estilo de Vida
12.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831374

RESUMO

The concept of epigenetic reprogramming predicts long-term functional health effects. This reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The exogenous or endogenous changes that involve developing a roadmap of epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, are paramount to establishing youthful cell type and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations. Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer development, including DNA methylation, histone modifications, nucleosome positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies applied from conception could represent an innovative epigenetic target for preventing and treating human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling platforms (GPCR), highlighting putative future perspectives in this field.

15.
Cancers (Basel) ; 14(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892853

RESUMO

Metastatic pancreatic cancer has an invariably fatal outcome, with an estimated median progression-free survival of approximately six months employing our best combination chemotherapeutic regimens. Once drug resistance develops, manifested by increased primary tumor size and new and growing metastases, patients often die rapidly from their disease. Emerging evidence indicates that chemotherapy may contribute to the development of drug resistance through the upregulation of epithelial-mesenchymal transition (EMT) pathways and subsequent cancer stem cell (CSC) enrichment. Neuraminidase-1 (Neu-1) regulates the activation of several receptor tyrosine kinases implicated in EMT induction, angiogenesis, and cellular proliferation. Here, continuous therapeutic targeting of Neu-1 using parenteral perfusion of oseltamivir phosphate (OP) and aspirin (ASA) with gemcitabine (GEM) treatment significantly disrupts tumor progression, critical compensatory signaling mechanisms, EMT program, CSC, and metastases in a preclinical mouse model of human pancreatic cancer. ASA- and OP-treated xenotumors significantly inhibited the metastatic potential when transferred into animals.

16.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326525

RESUMO

Resistance to chemotherapeutics and high metastatic rates contribute to the abysmal survival rate in patients with pancreatic cancer. An alternate approach for treating human pancreatic cancer involves repurposing the anti-inflammatory drug, aspirin (ASA), with oseltamivir phosphate (OP) in combination with the standard chemotherapeutic agent, gemcitabine (GEM). The question is whether treatment with ASA and OP can sensitize cancer cells to the cytotoxicity induced by GEM and limit the development of chemoresistance. To assess the key survival pathways critical for pancreatic cancer progression, we used the AlamarBlue cytotoxicity assay to determine the cell viability and combination index for the drug combinations, flow cytometric analysis of annexin V apoptosis assay to detect apoptotic and necrotic cells, fluorometric QCM™ chemotaxis migration assay to assess cellular migration, fluorometric extracellular matrix (ECM) cell adhesion array kit to assess the expression of the ECM proteins, scratch wound assay using the 96-well WoundMaker™, and the methylcellulose clonogenic assay to assess clonogenic potential. The combination of ASA and OP with GEM significantly upended MiaPaCa-2 and PANC-1 pancreatic cancer cell viability, clonogenic potential, expression of critical extracellular matrix proteins, migration, and promoted apoptosis. ASA in combination with OP significantly improves the effectiveness of GEM in the treatment of pancreatic cancer and disables key survival pathways critical to disease progression.

17.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502328

RESUMO

Thymoquinone has anti-cancer properties. However, its application for clinical use is limited due to its volatile characteristics. The current study aims to develop a polymeric nanoformulation with PLGA-PEG and Pluronics F68 as encapsulants to conserve thymoquinone's (TQ) biological activity before reaching the target sites. Synthesis of nanoparticles was successfully completed by encapsulating TQ with polymeric poly (D, L-lactide-co-glycolide)-block-poly (ethylene glycol) and Pluronics F68 (TQ-PLGA-PF68) using an emulsion-solvent evaporation technique. The size and encapsulation efficiency of TQ-PLGA-PF68 nanoparticles were 76.92 ± 27.38 nm and 94%, respectively. TQ released from these encapsulants showed a biphasic released pattern. Cytotoxicity activity showed that tamoxifen-resistant (TamR) MCF-7 breast cancer cells required a higher concentration of TQ-PLGA-PF68 nanoparticles than the parental MCF-7 cells to achieve IC50 (p < 0.05). The other two resistant subtypes (TamR UACC732 inflammatory breast carcinoma and paclitaxel-resistant (PacR) MDA-MB 231 triple-negative breast cell line) required a lower concentration of TQ-PLGA-PF68 nanoparticles compared to their respective parental cell lines (p < 0.05). These findings suggest that TQ encapsulation with PLGA-PEG and Pluronics F68 is a promising anti-cancer agent in mitigating breast cancer resistance to chemotherapeutics. In future studies, the anti-cancer activity of TQ-PLGA-PF68 with the standard chemotherapeutic drugs used for breast cancer treatment is recommended.


Assuntos
Benzoquinonas/química , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Nanopartículas/administração & dosagem , Poloxâmero/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/patologia , Composição de Medicamentos , Feminino , Humanos , Células MCF-7 , Nanopartículas/química , Paclitaxel/farmacologia
18.
Cancers (Basel) ; 13(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34298809

RESUMO

Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.

19.
Oncotarget ; 12(15): 1470-1489, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34316328

RESUMO

OBJECTIVE: Aberrations in the PI3K/AKT/mTOR survival pathway in many cancers are the most common genomic abnormalities. The phytochemical and bioactive agent sulforaphane (SFN) has nutrigenomic potential in activating the expression of several cellular protective genes via the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is primarily related to mechanisms of endogenous cellular defense and survival. The efficacy of SFN in combination with acetazolamide (AZ) was investigated in reducing typical H727 and atypical H720 BC survival, migration potential, and apoptosis in vitro and in vivo preclinical xenograft tissues. MATERIALS AND METHODS: Microscopic imaging, immunocytochemistry, wound healing assay, caspase-cleaved cytokeratin 18 (M30, CCK18) CytoDeath ELISA assay, immunofluorescence labeling assays for apoptosis, hypoxia, Western Blotting, Tunnel assay, measurement of 5-HT secretion by carbon fiber amperometry assay, quantitative methylation-specific PCR (qMSP), morphologic changes, cell viability, apoptosis activity and the expression levels of phospho-Akt1, Akt1, HIF-1α, PI3K, p21, CAIX, 5-HT, phospho-mTOR, and mTOR in xenografts derived from typical H727 and atypical H720 BC cell lines. RESULTS: Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues. AZ+SFN targeted multiple pathways involved in cell cycle, serotonin secretion, survival, and growth pathways, highlighting its therapeutic approach. Both H727 and H720 cells were associated with induction of apoptosis, upregulation of the p21 cell cycle inhibitor, and downregulation of the PI3K/Akt/mTOR pathway, suggesting that the PI3K/Akt/mTOR pathway is a primary target of the AZ+SFN combination therapy. CONCLUSIONS: Combining SFN+AZ significantly inhibits the PI3K/Akt/mTOR pathway and significantly reducing 5-HT secretion in carcinoid syndrome.

20.
Cancers (Basel) ; 13(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205080

RESUMO

Therapeutic targeting of stem cells needs to be strategically developed to control tumor growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). The development of 3D stem-like properties of human breast tumor spheroids in stem cell factor conditioned media was investigated in orthotopic xenografts for enhanced tumorgenicity in the athymic nude rat model. MCF-7, ZR-75-1, and MDA-MB-231 breast cancer cell lines were cultured in serum-free, stem cell factor-supplemented medium under non-adherent conditions and passaged to generate 3rd generation spheroids. The spheroids were co-cultured with fetal lung fibroblast (FLF) cells before orthotopic heterotransplantation into the mammary fat pads of athymic nude rats. Excised xenografts were assessed histologically by H&E staining and immunohistochemistry for breast cancer marker (ERB1), proliferation marker (Ki67), mitotic marker (pHH3), hypoxia marker (HIF-2α), CSC markers (CD47, CD44, CD24, and CD133), and vascularization markers (CD31, CD34). Breast cancer cells cultured in stem cell factor supplemented medium generated 3D spheroids exhibited increased stem-like characteristics. The 3D stem-like spheroids co-cultured with FLF as supporting stroma reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA