RESUMO
BACKGROUND/AIM: As prostaglandin E2 (PGE2) and its receptors (EP2) are over-expressed on tumor cells and microenvironment, radiolabeled cyclodextrins targeting such biomolecules are valuable vector candidates in molecular cancer diagnostics. Using experimental melanoma models, we evaluated the in vivo imaging behavior of novel Manganese-52-labeled (52Mn) randomly methylated beta-cyclodextrin ([52Mn]Mn-DOTAGA-RAMEB) and compared it with the following well-established tumor-specific probes: melanocortin-1 receptor (MC1-R)-affine [68Ga]Ga-DOTA-NAPamide and PGE2 selective [68Ga]Ga-DOTAGA-RAMEB cyclodextrin. MATERIALS AND METHODS: Post-injection of [68Ga]Ga-DOTA-NAPamide, [68Ga]Ga-DOTAGA-RAMEB, and [52Mn]Mn-DOTAGA-RAMEB into MC1-R positive B16F10 melanoma-bearing mice, tumor radio-pharmaceutical uptake was quantified in vivo and ex vivo using preclinical positron emission tomography (PET) and high-performance gamma counter. RESULTS: Although all tracers performed well in tumor identification, the highest standardized uptake values were detected in the [68Ga]Ga-DOTA-NAPamide scans. Corresponding to the ex vivo data, meaningful [52Mn]Mn-DOTAGA-RAMEB accumulation 1 h post-injection confirmed the tumor-targeting potential of the tracer. Temporal changes in PGE2/EP2 expression of the neoplasms may explain the significant differences observed between the tumor uptake of the two cyclodextrin probes and that of the 52Mn-labelled compound measured 1 h, 4 h, and 3 days post-injection (p≤0.01, p≤0.05). CONCLUSION: Although further pharmacokinetical optimization may be required, 52Mn-labelled cyclodextrin holds potential in melanoma diagnostics and the PET-based longitudinal assessment of tumor-associated PGE2/EP2 expression.
Assuntos
Melanoma Experimental , beta-Ciclodextrinas , Animais , Camundongos , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/metabolismo , beta-Ciclodextrinas/química , Linhagem Celular Tumoral , Melanoma/diagnóstico por imagem , Melanoma/metabolismo , Melanoma/patologia , Compostos Radiofarmacêuticos , Manganês , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Modelos Animais de Doenças , Humanos , Dinoprostona/metabolismoRESUMO
This study aimed to develop a novel radiotracer using trastuzumab and the long-lived [52Mn]Mn isotope for HER2-targeted therapy selection and monitoring. A new Mn(II) chelator, BPPA, synthesized from a rigid bispyclen platform possessing a picolinate pendant arm, formed a stable and inert Mn(II) complex with favorable relaxation properties. BPPA was converted into a bifunctional chelator (BFC), conjugated to trastuzumab, and labeled with [52Mn]Mn isotope. In comparison to DOTA-GA-trastuzumab, the BPPA-trastuzumab conjugate exhibits a labeling efficiency with [52Mn]Mn approximately 2 orders of magnitude higher. In female CB17 SCID mice bearing 4T1 (HER2-) and MDA-MB-HER2+ (HER2+) xenografts, [52Mn]Mn-BPPA-trastuzumab demonstrated superior uptake in HER2+ cells on day 3, with a 3-4 fold difference observed on day 7. Overall, the hexadentate BPPA chelator proves to be exceptional in binding Mn(II). Upon coupling with trastuzumab as a BFC ligand, it becomes an excellent imaging probe for HER2-positive tumors. [52Mn]Mn-BPPA-trastuzumab enables an extended imaging time window and earlier detection of HER2-positive tumors with superior tumor-to-background contrast.
Assuntos
Manganês , Camundongos SCID , Tomografia por Emissão de Pósitrons , Receptor ErbB-2 , Trastuzumab , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Quelantes/química , Quelantes/síntese química , Manganês/química , Manganês/metabolismo , Camundongos Endogâmicos BALB C , Ácidos Picolínicos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Trastuzumab/químicaRESUMO
Until the recent years, substances containing radioactive 61Cu were strongly considered as potential positron-emitting radiopharmaceuticals for use in positron emission tomography (PET) applications; however, due to their suitably long half-life, and generator-independent and cost-effective production, they seem to be economically viable for human imaging. Since malignant melanoma (MM) is a major public health problem, its early diagnosis is a crucial contributor to long-term survival, which can be achieved using radiolabeled α-melanocyte-stimulating hormone analog NAPamide derivatives. Here, we report on the physicochemical features of a new CB-15aneN5-based Cu(II) complex ([Cu(KFTGdiac)]-) and the ex vivo and in vivo characterization of its NAPamide conjugate. The rigid chelate possesses prompt complex formation and suitable inertness (t1/2 = 18.4 min in 5.0 M HCl at 50 °C), as well as excellent features in the diagnosis of B16-F10 melanoma tumors (T/M(SUVs) (in vivo): 12.7, %ID/g: 6.6 ± 0.3, T/M (ex vivo): 22).
Assuntos
Radioisótopos de Cobre , Melanoma Experimental , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Radioisótopos de Cobre/química , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Melanoma Experimental/diagnóstico por imagem , Melanoma/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Humanos , Linhagem Celular Tumoral , Distribuição Tecidual , Complexos de Coordenação/química , Complexos de Coordenação/síntese químicaRESUMO
Although radiolabeled alpha-melanocyte stimulating hormone-analogue NAPamide derivatives are valuable melanoma-specific diagnostic probes, their rapid elimination kinetics and high renal uptake may preclude them from being used in clinical settings. We aimed at improving the pharmacokinetics of radiolabeled DOTA-NAPamide compounds by incorporating a 4-(p-iodo-phenyl)-butanoic acid (IPB) into the molecules. Followed by 68Ga-, 205/206Bi-, and 177Lu-labelling, the radiopharmaceuticals ([68Ga]Ga-DOTA-IPB-NAPamide, [205/206Bi]Bi-DOTA-IPB-NAPamide, [177Lu]Lu-DOTA-IPB-NAPamide) were characterized in vitro. To test the imaging behavior of the IPB-containing probes, B16F10 tumor-bearing C57BL/6 mice were subjected to in vivo microPET/microSPECT/CT imaging and ex vivo biodistribution studies. All tracers were stable in vitro, with radiochemical purity exceeding 98%. The use of albumin-binding moiety lengthened the in vivo biological half-life of the IPB-carrying radiopharmaceuticals, resulting in elevated tumor accumulation. Both [68Ga]Ga-DOTA-IPB-NAPamide (5.06 ± 1.08 %ID/g) and [205/206Bi]Bi-DOTA-IPB-NAPamide (4.50 ± 0.98 %ID/g) exhibited higher B16F10 tumor concentrations than their matches without the albumin-binding residue ([68Ga]Ga-DOTA-NAPamide and [205/206Bi]Bi-DOTA-NAPamide: 1.18 ± 0.27 %ID/g and 3.14 ± 0.32; respectively), however; the large amounts of off-target radioactivity do not confirm the benefits of half-life extension for short-lived isotopes. Enhanced [177Lu]Lu-DOTA-IPB-NAPamide tumor uptake even 24 h post-injection proved the advantage of IPB-based prolonged circulation time regarding long-lived radionuclides, although the significant background noise must be addressed in this case as well.
RESUMO
Melanocortin-1 receptor (MC1-R) targeting alpha-melanocyte stimulating hormone-analogue (α-MSH) biomolecules labelled with α-emitting radiometal seem to be valuable in the targeted radionuclide therapy of MC1-R positive melanoma malignum (MM). Herein is reported the anti-tumor in vivo therapeutic evaluation of MC1-R-affine [213Bi]Bi-DOTA-NAPamide and HOLDamide treatment in MC1-R positive B16-F10 melanoma tumor-bearing C57BL/6J mice. On the 6th, 8th and 10th days post tumor cell inoculation; the treated groups of mice were intravenously injected with approximately 5 MBq of both amide derivatives. Beyond body weight and tumor volume assessment, [68Ga]Ga-DOTA-HOLDamide and NAPamide-based PET/MRI scans, and ex vivo biodistribution studies were executed 30,- and 90 min postinjection. In the PET/MRI imaging studies the B16-F10 tumors were clearly visualized with both 68Ga-labelled tracers, however, significantly lower tumor-to-muscle (T/M) ratios were observed by using [68Ga]Ga-DOTA-HOLDamide. After alpha-radiotherapy treatment the tumor size of the control group was larger relative to both treated cohorts, while the smallest tumor volumes were observed in the NAPamide-treated subclass on the 10th day. Relatively higher [213Bi]Bi-DOTA-NAPamide accumulation in the B16-F10 tumors (%ID/g: 2.71 ± 0.15) with discrete background activity led to excellent T/M ratios, particularly 90 min postinjection. Overall, the therapeutic application of receptor selective [213Bi]Bi-DOTA-NAPamide seems to be feasible in MC1-R positive MM management.
Assuntos
Melanoma Experimental , Receptor Tipo 1 de Melanocortina , Animais , Camundongos , Camundongos Endogâmicos C57BL , Radioisótopos de Gálio , Distribuição Tecidual , Hormônios Estimuladores de Melanócitos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/radioterapiaRESUMO
Octadentate ligands containing ethyl (H4OCTAPA), cyclohexyl (H4CHXOCTAPA) or cyclopentyl (H4CpOCTAPA) spacers were assessed as chelators for Bi(III)-based radiopharmaceuticals. The H4CHXOCTAPA chelator displays excellent properties, including 205/206Bi-nuclide radiolabelling under mild conditions, excellent stability in serum and in the presence of competing cations or H5DTPA. The poor performance of H4CpOCTAPA appears to be related to the stereochemical activity of the Bi(III) lone pair.
Assuntos
Quelantes , Compostos Radiofarmacêuticos , Ligantes , Bismuto/químicaRESUMO
Since NGR-tripeptides (asparagine-glycine-arginine) selectively target neoangiogenesis-associated Aminopeptidase N (APN/CD13) on cancer cells, we aimed to evaluate the in vivo tumour targeting capability of radiolabelled, NGR-containing, ANP/CD13-selective [213Bi]Bi-DOTAGA-cKNGRE in CD13pos. HT1080 fibrosarcoma-bearing severe combined immunodeficient CB17 mice. 10 ± 1 days after cancer cell inoculation, positron emission tomography (PET) was performed applying [68Ga]Ga-DOTAGA-cKNGRE for tumour verification. On the 7th, 8th, 10th and 12th days the treated group of tumourous mice were intraperitoneally administered with 4.68 ± 0.10 MBq [213Bi]Bi-DOTAGA-cKNGRE, while the untreated tumour-bearing animals received 150 µL saline solution. In addition to body weight (BW) and tumour volume measurements, ex vivo biodistribution studies were conducted 30 and 90 min postinjection (pi.). The following quantitative standardised uptake values (SUV) confirmed the detectability of the HT1080 tumours: SUVmean and SUVmax: 0.37 ± 0.09 and 0.86 ± 0.14, respectively. Although no significant difference (p ≤ 0.05) was encountered between the BW of the treated and untreated mice, their tumour volumes measured on the 9th, 10th and 12th days differed significantly (p ≤ 0.01). Relatively higher [213Bi]Bi-DOTAGA-cKNGRE accumulation of the HT1080 neoplasms (%ID/g: 0.80 ± 0.16) compared with the other organs at 90 min time point yields better tumour-to-background ratios. Therefore, the therapeutic application of APN/CD13-affine [213Bi]Bi-DOTAGA- cKNGRE seems to be promising in receptor-positive fibrosarcoma treatment.
RESUMO
Among humanized monoclonal antibodies, bevacizumab specifically binds to vascular endothelial growth factor A (VEGF-A). VEGF-A is an overexpressed biomarker in cervix carcinoma and is involved in the development and maintenance of tumor-associated neo-angiogenesis. The non-invasive positron emission tomography using radiolabeled target-specific antibodies (immuno-PET) provides the longitudinal and quantitative assessment of tumor target expression. Due to antibodies having a long-circulating time, radioactive metal ions (e.g., 52Mn) with longer half-lives are the best candidates for isotope conjugation. The aim of our preclinical study was to assess the biodistribution and tumor-targeting potential of 52Mn-labeled DOTAGA-bevacizumab. The VEGF-A targeting potential of the new immuno-PET ligand was assessed by using the VEGF-A expressing KB-3-1 (human cervix carcinoma) tumor-bearing CB17 SCID mouse model and in vivo PET/MRI imaging. Due to the high and specific accumulation found in the subcutaneously located experimental cervix carcinoma tumors, [52Mn]Mn-DOTAGA-bevacizumab is a promising PET probe for the detection of VEGF-A positive gynecological tumors, for patient selection, and monitoring the efficacy of therapies targeting angiogenesis.
RESUMO
The introduction of a phenolate pendant arm in place of an acetate on AAZTA- and DATA-like ligands resulted in hepta- and hexadentate chelators able to form Ga(III) complexes with thermodynamic stability and kinetic inertness higher than that of other Ga(III) complexes based on the parent 6-amino-6-methylperhydro-1,4-diazepine scaffold. In particular, the heptadentate AAZ3A-endoHB with a phenolate arm on an endocyclic N-atom shows a logKGaL of 27.35 and a remarkable resistance to hydroxide coordination up to basic pH (pH>9). This behaviour allows to also improve the kinetic inertness of the complex showing a dissociation half-life (t1/2 ) at pHâ 7.4 of 76â h. Although also the hexadentate AAZ2A-exoHB chelator forms a stable (logKGaL =24.69) and inert (t1/2 =33â h at pHâ 7.4) Ga(III) complex, the 68 Ga labelling showed a better radiochemical yield with AAZ3A-endoHB, especially at room temperature. Thus, a bifunctional chelator of AAZ3A-endoHB was synthesized bearing an isothiocyanate group that was conjugated to the N-terminus of a c(RGD) peptide for integrin receptor targeting. Finally, the conjugate was successfully labelled with 68 Ga isotope, and the resulting radiotracer tested for its stability in human serum and then inâ vivo for targeting B16-F10 tumours with miniPET imaging.
Assuntos
Quelantes , Neoplasias , Humanos , Quelantes/química , Braço , Radioisótopos de Gálio/química , Compostos Radiofarmacêuticos/química , Tomografia por Emissão de Pósitrons/métodosRESUMO
Malignant melanoma is a major public health problem with an increasing incidence and mortality in the Caucasian population due to its significant metastatic potential. The early detection of this cancer type by imaging techniques like positron emission tomography acts as an important contributor to the long-term survival. Based on literature data, the radio labelled alpha-MSH analog NAPamide molecule is an appropriate diagnostic tool for the detection of melanoma tumors. Inspired by these facts, a new radiotracer, the [61Cu]Cu-KFTG-NAPamide has been synthesized to exploit the beneficial features of the positron emitter 61Cu and the melanoma specificity of the NAPamide molecule. In this work, we report a new member of the CB-15aneN5 ligand family (KFTG) as the chelator for 61Cu(II) complexation. On the basis of the thorough physico-chemical characterization, the rigid [Cu(KFTG)]+ complex exhibits fast complex formation (t1/2 = 155 s at pH 5.0 and 25 °C) and high inertness (t1/2 = 2.0 h in 5.0 M HCl at 50 °C) as well as moderate superoxide dismutase activity (IC50 = 2.3 µM). Furthermore, the [61Cu]Cu-KFTG-NAPamide possesses outstanding features in the diagnostics of B16-F10 melanoma tumors by PET imaging: (T/M(SUVs) (in vivo): appr. 14, %ID/g: 7 ± 1 and T/M (ex vivo): 315 ± 24 at 180 min).
Assuntos
Melanoma Experimental , Compostos Radiofarmacêuticos , Animais , Humanos , Compostos Radiofarmacêuticos/química , alfa-MSH/química , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons/métodos , Melanoma Experimental/diagnóstico por imagem , Linhagem Celular TumoralRESUMO
Given that galectin-3 (Gal-3) is a ß-galactoside-binding lectin promoting tumor growth and metastatis, it could be a valuable target for the treatment of Gal-3-expressing neoplasms. An aromatic group introduced to the C-3' position of lactosamine increased its affinity for Gal-3. Herein, we aimed at developing a radiopharmaceutical for the detection of Gal-3 positive malignancies. To enhance tumor specificity, a heterodimeric radiotracer capable of binding to both Gal-3 and αvß3 integrin was also synthetized. Arginine-glycine-asparagine (RGD) peptide is the ligand of angiogenesis- and metastasis-associated αvß3 integrin. Following the synthesis of the chelator-conjugated (2-naphthyl)methylated lactosamine, the obtained compound was applied as a precursor for radiolabeling and was conjugated to the RGD peptide by click reaction as well. Both synthetized precursors were radiolabeled with 68Ga, resulting in high labeling yield (>97). The biological studies were carried out using B16F10 melanoma tumor-bearing C57BL6 mice. High tumor accumulation of both labeled lactosamine derivativesdetected by in vivo PET and ex vivo biodistribution studiesindicated their potential for melanoma detection. However, the heterodimer radiotracer showed high hepatic uptake, while low liver accumulation characterized chelator-conjugated lactosamine, resulting in PET images with excellent contrast. Therefore, this novel carbohydrate-based radiotracer is suitable for the highly selective determination of Gal-3-expressing melanoma cells.
RESUMO
Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer (PCa). Since bombesin analogue aminobenzoic-acid (AMBA) binds to GRPR with high affinity, scandium-44 conjugated AMBA is a promising radiotracer in the PET diagnostics of GRPR positive tumors. Herein, the GRPR specificity of the newly synthetized [44Sc]Sc-NODAGA-AMBA was investigated in vitro and in vivo applying PCa PC-3 xenograft. After the in-vitro assessment of receptor binding, PC-3 tumor-bearing mice were injected with [44Sc]Sc/[68Ga]Ga-NODAGA-AMBA (in blocking studies with bombesin) and in-vivo PET examinations were performed to determine the radiotracer uptake in standardized uptake values (SUV). 44Sc/68Ga-labelled NODAGA-AMBA was produced with high molar activity (approx. 20 GBq/µmoL) and excellent radiochemical purity. The in-vitro accumulation of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was approximately 25-fold higher than that of the control HaCaT cells. Relatively higher uptake was found in vitro, ex vivo, and in vivo in the same tumor with the 44Sc-labelled probe compared to [68Ga]Ga-NODAGA-AMBA. The GRPR specificity of [44Sc]Sc-NODAGA-AMBA was confirmed by significantly (p ≤ 0.01) decreased %ID and SUV values in PC-3 tumors after bombesin pretreatment. The outstanding binding properties of the novel [44Sc]Sc-NODAGA-AMBA to GRPR outlines its potential to be a valuable radiotracer in the imaging of GRPR-positive PCa.
Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Acetatos , Animais , Bombesina , Linhagem Celular Tumoral , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/metabolismo , Receptores da Bombesina/metabolismoRESUMO
Targeted α therapy (TAT) is a promising tool in the therapy of cancer. The radionuclide 213 BiIII shows favourable physical properties for this application, but the fast and stable chelation of this metal ion remains challenging. Herein, we demonstrate that the mesocyclic chelator AAZTA quickly coordinates BiIII at room temperature, leading to a robust complex. A comprehensive study of the structural, thermodynamic and kinetic properties of [Bi(AAZTA)]- is reported, along with bifunctional [Bi(AAZTA-C4-COO- )]2- and the targeted agent [Bi(AAZTA-C4-TATE)]- , which incorporates the SSR agonist Tyr3 -octreotate. An unexpected increase in the stability and kinetic inertness of the metal chelate was observed for the bifunctional derivative and was maintained for the peptide conjugate. A cyclotron-produced 205/206 Bi mixture was used as a model of 213 Bi in labelling, stability, and biodistribution experiments, allowing the efficiency of [213 Bi(AAZTA-C4-TATE)]- to be estimated. High accumulation in AR42J tumours and reduced kidney uptake were observed with respect to the macrocyclic chelate [213 Bi(DOTA-TATE)]- .
Assuntos
Bismuto , Quelantes , Quelantes/química , Bismuto/química , Distribuição Tecidual , Radioisótopos/uso terapêutico , Radioisótopos de Gálio , Compostos Radiofarmacêuticos/uso terapêuticoRESUMO
Prostaglandin E2 (PGE2) molecule and its receptors play an important role in the development of malignancies and metastases therefore PGE2 may play a crucial role in the diagnosis and a new therapeutic target in the field of radionuclide therapy of PGE2-positive tumors. PGE2 form complexes with RAMEB (randomly-methylated-beta-cyclodextrin) with high affinity therefore the aim of this present study was to synthesize a PGE2-specific DOTAGA-RAMEB, which can be labeled with diagnostic and therapeutic isotopes also and binds to PGE2-positive tumors. DOTAGA-RAMEB was labeled with 68Ga and 205/206Bi radionuclides and their radiochemical purity (RCP%), partition coefficient (logP values), and in vitro and in vivo stability were determined. For the assessment of the biological properties and the PGE2 specificity of [68Ga]Ga-DOTAGA-RAMEB and [205/206Bi]Bi-DOTAGA-RAMEB in vivo PET imaging and ex vivo biodistribution studies were performed using healthy control and PGE2-positive BxPC-3 tumor-bearing CB17 SCID mice. The RCP% of the newly synthesized [68Ga]Ga-DOTAGA-RAMEB and [205/206Bi]Bi-DOTAGA-RAMEB was higher than 98 %. In vivo studies showed that the tumor-to-background ratio of [68Ga]Ga-DOTAGA-RAMEB was 2.5 ± 0.2 as a result BxPC-3 tumors were clearly identified on PET images. Beside this the ex vivo biodistribution studies showed that the accumulation rate of [68Ga]Ga-DOTAGA-RAMEB and [205/206Bi]Bi-DOTAGA-RAMEB was similar in the PGE2-positive BxPC-3 tumors.
Assuntos
Neoplasias , beta-Ciclodextrinas , Animais , Bismuto , Linhagem Celular Tumoral , Dinoprostona/metabolismo , Radioisótopos de Gálio/química , Camundongos , Camundongos SCID , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Radioisótopos , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/uso terapêutico , Distribuição Tecidual , beta-Ciclodextrinas/químicaRESUMO
Hypoxia promotes angiogenesis, which is crucial for tumor growth, and induces malignant progression and increases the therapeutic resistance. Positron emission tomography (PET) enables the detection of the hypoxic regions in tumors using 2-nitroimidazole-based radiopharmaceuticals. We describe here a physicochemical study of the Sc(DO3AM-NI) complex, which indicates: (a) relatively slow formation of the Sc(DO3AM-NI) chelate in acidic solution; (b) lower thermodynamic stability than the reference Sc(DOTA); (c) however, it is substantially more inert and consequently can be regarded as an excellent Sc-binder system. In addition, we report a comparison of 44Sc-labeled DO3AM-NI with its known 68Ga-labeled analog as a hypoxia PET probe. The in vivo and ex vivo biodistributions of 44Sc- and 68Ga-labeled DO3AM-NI in healthy and KB tumor-bearing SCID mice were examined 90 and 240 min after intravenous injection. No significant difference was found between the accumulation of 44Sc- and 68Ga-labeled DO3AM-NI in KB tumors. However, a significantly higher accumulation of [68Ga]Ga(DO3AM-NI) was found in liver, spleen, kidney, intestine, lung, heart and brain than for [44Sc]Sc(DO3AM-NI), leading to a lower tumor/background ratio. The tumor-to-muscle (T/M) ratio of [44Sc]Sc(DO3AM-NI) was approximately 10-15-fold higher than that of [68Ga]Ga(DO3AM-NI) at all time points. Thus, [44Sc]Sc(DO3AM-NI) allows the visualization of KB tumors with higher resolution, making it a promising hypoxia-specific PET radiotracer.
RESUMO
Cyclotron-produced radiometals must be separated from the irradiated target and purified from other metal impurities, which could interfere with the radiolabeling process. We compared different chromatographic and colorimetric methods to determine the amount of transition metals in radioactive samples. Besides commercially available colorimetric tests, 4-(2-pyridylazo)resorcinol and xylenol orange were used as a non-selective metal reagents, forming water-soluble chelates with most of the transition metals immediately. We compared the applicability of pre- and post-column derivatization, as well as colorimetric determination without separation. The studied chromatographic and colorimetric analyses are not suitable to completely replace atomic spectroscopic techniques for the determination of metal contaminants in radioactive samples, but they may play an important role in the development of methods for the purification of radiometals and in their routine quality control.
RESUMO
A new pyclen-3,9-diacetate derivative ligand (H23,9-OPC2A) was synthesized possessing an etheric O-atom opposite to the pyridine ring, to improve the dissociation kinetics of its Mn(II) complex (pyclen = 3,6,9,15-tetraazabicyclo(9.3.1)pentadeca-1(15),11,13-triene). The new ligand is less basic than the N-containing analogue (H23,9-PC2A) due to the non-protonable O-atom. In spite of its lower basicity, the conditional stability of the [Mn(3,9-OPC2A)] (pMn = -log(Mn(II)), cL = cMn(II) = 0.01 mM. pH = 7.4) remains unaffected (pMn = 8.69), compared to the [Mn(3,9-PC2A)] (pMn = 8.64). The [Mn(3,9-OPC2A)] possesses one water molecule, having a lower exchange rate with bulk solvents (kex298 = 5.3 ± 0.4 × 107 s-1) than [Mn(3,9-PC2A)] (kex298 = 1.26 × 108 s-1). These mild differences are rationalized by density-functional theory (DFT) calculations. The acid assisted dissociation of [Mn(3,9-OPC2A)] is considerably slower (k1 = 2.81 ± 0.07 M-1 s-1) than that of the complexes of diacetates or bisamides of various 12-membered macrocycles and the parent H23,9-PC2A. The [Mn(3,9-OPC2A)] is inert in rat/human serum as confirmed by 52Mn labeling (nM range), as well as by relaxometry (mM range). However, a 600-fold excess of EDTA (pH = 7.4) or a mixture of essential metal ions, propagated some transchelation/transmetalation in 7 days. The H23,9-OPC2A is labeled efficiently with 52Mn at elevated temperatures, yet at 37 °C the parent H23,9-PC2A performs slightly better. Ultimately, the H23,9-OPC2A shows advantageous features for further ligand designs for bifunctional chelators.
RESUMO
Tumor hypoxia induces angiogenesis, which is required for tumor cell survival. The aminopeptidase N receptor (APN/CD13) is an excellent marker of angiogenesis since it is overexpressed in angiogenic blood vessels and in tumor cells. Asparagine-glycine-arginine (NGR) peptide analogs bind selectively to the APN/CD13 recepto, therefore, they are important vector molecules in the development of a PET radiotracer which is capable of detecting APN-rich tumors. To investigate the effect of glycosylation and pegylation on in-vivo efficacy of an NGR-based radiotracer, two 68Ga-labeled radioglycopeptides were synthesized. A lactosamine derivative was applied to glycosylation of the NGR derivative and PEG4 moiety was used for pegylation. The receptor targeting potential and biodistribution of the radiopeptides were evaluated with in vivo PET imaging studies and ex vivo tissue distribution studies using B16-F10 melanoma tumor-bearing mice. According to these studies, all synthesized radiopeptides were capable of detecting APN expression in B16-F10 melanoma tumor. In addition, lower hepatic uptake, higher tumor-to background (T/M) ratio and prolonged circulation time were observed for the novel [68Ga]-10 radiotracer due to pegylation and glycosylation, resulting in more contrasting PET imaging. These in vivo PET imaging results correlated well with the ex vivo tissue distribution data.
RESUMO
In recent years Auger electron emitters have been suggested as promising candidates for radiotherapy with no side effects in cancer treatment. In this work we report a detailed coordination chemistry study of [Sb(PCTA)] (PCTA: 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), a macrocyclic aminopolycarboxylate-type complex of antimony(III), whose 119Sb isotope could be a suitable low-energy electron emitter for radiotherapy. The thermodynamic stability of the chelate obtained by pH-potentiometry and UV-vis spectrophotometry is high enough (log K[Sb(PCTA)] = 23.2(1)) to prevent the hydrolysis of the metal ion near physiological pH. The formation of [Sb(PCTA)] is confirmed by NMR and electrospray ionization mass spectrometry measurements in solution; furthermore, the structure of [Sb(PCTA)]·NaCl·3H2O and [Sb(PCTA)]·HCl·3H2O is described by X-ray and density functional theory calculations. Consequently, the [Sb(PCTA)] is the first thermodynamically stable antimony(III) complex bearing polyamino-polycarboxylate macrocyclic platform. Our results demonstrate the potential of rigid (pyclen derivative) ligands as chelators for future applications of Sb(III) in a targeted radiotherapy based on the 119Sb isotope.
Assuntos
Antimônio/química , Complexos de Coordenação/química , Teoria da Densidade Funcional , Ligantes , Modelos Moleculares , Estrutura Molecular , SoluçõesRESUMO
Radiolabeled peptides possessing an Arg-Gly-Asp (RGD) motif are widely used radiopharmaceuticals for PET imaging of tumor angiogenesis due to their high affinity and selectivity to αvß3 integrin. This receptor is overexpressed in tumor and tumor endothelial cells in the case of numerous cancer cell lines, therefore, it is an excellent biomarker for cancer diagnosis. The galectin-3 protein is also highly expressed in tumor cells and N-acetyllactosamine is a well-established ligand of this receptor. We have developed a synthetic method to prepare a lactosamine-containing radiotracer, namely 68Ga-NODAGA-LacN-E[c(RGDfK)]2, for cancer diagnosis. First, a lactosamine derivative with azido-propyl aglycone was synthetized. Then, NODAGA-NHS was attached to the amino group of this lactosamine derivative. The obtained compound was conjugated to an E[c(RGDfK)]2 peptide with a strain-promoted click reaction. We have accomplished the radiolabeling of the synthetized NODAGA-LacN-E[c(RGDfK)]2 precursor with a positron-emitting 68Ga isotope (radiochemical yield of >95%). The purification of the labeled compound with solid-phase extraction resulted in a radiochemical purity of >99%. Subsequently, the octanol-water partition coefficient (log P) of the labeled complex was determined to be -2.58. In addition, the in vitro stability of 68Ga-NODAGA-LacN-E[c(RGDfK)]2 was investigated and it was found that it was stable under the examined conditions.