Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717527

RESUMO

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Assuntos
Columbidae , Voo Animal , Transcriptoma , Animais , Columbidae/genética , Columbidae/fisiologia , Voo Animal/fisiologia , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Músculos Peitorais/metabolismo , Músculos Peitorais/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia
2.
J Appl Genet ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568414

RESUMO

A potential application of single nucleotide polymorphisms (SNPs) in animal husbandry and production is identification of the animal breed. In this study, using chosen marker selection methods and genotypic data obtained with the use of Illumina Bovine SNP50 BeadChip for individuals belonging to ten cattle breeds, the reduced panels containing the most informative SNP markers were developed. The suitability of selected SNP panels for the effective and reliable assignment of the studied individuals to the breed of origin was checked by three allocation algorithms implemented in GeneClass 2. The studied breeds set included both Polish-native breeds under the genetic resources conservation programs and highly productive breeds with a global range. For all of the tested marker selection methods ("delta" and two FST-based variants), two separate methodological approaches of marker assortment were used and three marker panels were created with 96, 192, and 288 SNPs respectively, to determine the minimum number of markers required for effective differentiation of the studied breeds. Moreover, the usefulness of the most effective panels of markers to assess the population structure and genetic diversity of the analyzed breeds was examined. The conducted analyses showed the possibility of using SNP subsets from medium-density genotypic microarrays to distinguish breeds of cattle kept in Poland and to analyze their genetic structure.

3.
Res Sq ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38645140

RESUMO

Background: Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. Results: An equine ASE analysis was performed, using integrated Iso-seq and short-read RNA sequencing data from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues from the Functional Annotation of Animal Genomes (FAANG) project. Allele expression was quantified by haplotypes from long-read data, with 42,900 allele expression events compared. Within these events, 635 (1.48%) demonstrated ASE, with liver tissue containing the highest proportion. Genetic variants within ASE events were in histone modified regions 64.2% of the time. Validation of allele-specific variants, using a set of 66 equine liver samples from multiple breeds, confirmed that 97% of variants demonstrated ASE. Conclusions: This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues. Our results highlight the tissue-specific nature of allelic imbalance in the equine genome.

4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542236

RESUMO

Cumulus cell (CC) expansion is pivotal for oocyte maturation, during which CCs release factors that initiate paracrine signaling within the follicular fluid (FF). The FF is abundant in extracellular vesicles (EVs) that facilitate intercellular communication. Although bovine and murine EVs can control cumulus expansion, these effects have not been observed in equines. This study aimed to assess the impact of FF-derived EVs (ffEVs) on equine CC expansion, viability, and transcriptome. Cumulus-oocyte complexes (COCs) that underwent in vitro maturation (IVM) in the presence (200 µg protein/mL) or absence (control) of ffEVs were assessed for cumulus expansion and viability. CCs were isolated after 12 h of IVM, followed by RNA extraction, cDNA library generation, and subsequent transcriptome analysis using next-generation sequencing. Confocal microscopy images illustrated the internalization of labeled ffEVs by CCs. Supplementation with ffEVs significantly enhanced cumulus expansion in both compacted (Cp, p < 0.0001) and expanded (Ex, p < 0.05) COCs, while viability increased in Cp groups (p < 0.01), but decreased in Ex groups (p < 0.05), compared to the controls. Although transcriptome analysis revealed a subtle effect on CC RNA profiles, differentially expressed genes encompassed processes (e.g., MAPK and Wnt signaling) potentially crucial for cumulus properties and, consequently, oocyte maturation.


Assuntos
Vesículas Extracelulares , Líquido Folicular , Feminino , Animais , Cavalos , Bovinos , Camundongos , Transcriptoma , Sobrevivência Celular , Células do Cúmulo , Oócitos , Vesículas Extracelulares/genética , RNA , Técnicas de Maturação in Vitro de Oócitos
5.
ACS Appl Mater Interfaces ; 16(12): 15457-15478, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483821

RESUMO

The surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.


Assuntos
Antineoplásicos , Neoplasias da Mama , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Feminino , Linhagem Celular Tumoral , Carbono/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos Férricos/farmacologia , Antineoplásicos/farmacologia , Autofagia , Nanopartículas Magnéticas de Óxido de Ferro
6.
Mol Biol Rep ; 51(1): 456, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536498

RESUMO

BACKGROUND: To better understand the molecular mechanism responsible for the therapeutic potential of vitamin D, we conducted an analysis of the liver transcriptomes of adult female rats. METHODS: Adult female rats (n = 18) were divided into three groups, receiving different doses of vitamin D: group I, 0; group II, 1000 U/kg; and group III, 5000 U/kg. Growth, body weight, the weight of main organs, blood haematological and biochemical parameters were evaluated. Gene expression in the liver were analyzed using RNA-seq and qPCR techniques. RESULTS: We observed a lower platelet count (p < 0,008) and a significantly greater (p < 0.02) number of WBCs in rats supplemented with 1000 U/kg than in rats from group III (5000 U/kg). Moreover, we noted a trend (p < 0.06) in total cholesterol concentration, suggesting a linear decrease with increasing doses of vitamin D. RNA-seq analysis did not reveal any differentially expressed genes with FDR < 0.05. However, GSEA revealed significant activation of a number of processes and pathways, including: "metallothionein, and TspO/MBR family", and "negative regulation of tumor necrosis factor production". qPCR analysis revealed significant upregulation of the Mt1, Mt2 and Orm1 genes in animals receiving high doses of vitamin D (p < 0.025, p < 0.025, and p < 0009, respectively). Moreover, Srebp2 and Insig2 were significantly lower in both experimental groups than in the control group (p < 0.003 and p < 0.036, respectively). CONCLUSIONS: Our results support the anti-inflammatory, anitioxidant and anticholesterologenic potential of vitamin D but suggest that high doses of vitamin D are needed to obtain significant results in this regard.


Assuntos
Colecalciferol , Vitamina D , Ratos , Feminino , Animais , Colecalciferol/farmacologia , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitaminas/farmacologia , Suplementos Nutricionais , Fígado/metabolismo , Expressão Gênica , Orosomucoide/farmacologia
7.
Mamm Genome ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520527

RESUMO

Preserving genetic diversity is pivotal for enhancing genetic improvement and facilitating adaptive responses to selection. This study focuses on identifying key genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs), while exploring the genomic evolutionary connectedness among seven Iranian horses representing five indigenous breeds: Caspian, Turkemen, DareShuri, Kurdish, and Asil. Using whole-genome resequencing, we generated 2.7 Gb of sequence data, with raw reads ranging from 1.2 Gb for Caspian horses to 0.38 Gb for Turkoman horses. Post-filtering, approximately 1.9 Gb of reads remained, with ~ 1.5 Gb successfully mapped to the horse reference genome (EquCab3.0), achieving mapping rates between 76.4% (Caspian) and 98.35% (Turkoman). We identified 2,909,816 SNPs in Caspian horses, constituting around 0.1% of the genome. Notably, 71% of these SNPs were situated in intergenic regions, while 8.5 and 6.8% were located upstream and downstream, respectively. A comparative analysis of SNPs between Iranian and non-Iranian horse breeds showed that Caspian horses had the lowest number of shared SNPs with Turkoman horses. Instead, they showed a closer genetic relationship with DareShuri, Quarter, Arabian, Standardbred, and Asil breeds. Hierarchical clustering highlighted Caspian horses as a distinct cluster, underscoring their distinctive genomic signature. Caspian horses exhibit a unique genetic profile marked by an enrichment of private mutations in neurological genes, influencing sensory perception and awareness. This distinct genetic makeup shapes mating preferences and signifies a separate evolutionary trajectory. Additionally, significant non-synonymous single nucleotide polymorphisms (nsSNPs) in reproductive genes offer intervention opportunities for managing Caspian horses. These findings reveal the population genetic structure of Iranian horse breeds, contributing to the advancement of knowledge in areas such as conservation, performance traits, climate adaptation, reproduction, and resistance to diseases in equine science.

8.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260378

RESUMO

Background: Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. Results: In this work, we introduce and highlight the significance of an equine ASE analysis, containing integrated long- and short-read RNA sequencing data, along with insight from histone modification data, from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues. Conclusions: This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues and foster a deeper understanding of the impact of allelic imbalance in equine health and disease at the molecular level.

9.
Equine Vet J ; 56(3): 586-597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37565649

RESUMO

BACKGROUND: Recent studies have shown that in Arabian horse muscle, long-term exercise-induced expression of genes related to fatty acid degradation and the downregulation of genes belonging to the glycolysis/gluconeogenesis and insulin signalling pathways. Long-lasting physical exertion may trigger the metabolism to switch the main energy source from carbohydrates to lipids due to higher caloric content. OBJECTIVES: To describe the metabolism adaptation at the whole transcriptome of blood to endurance effort in Arabian horses. STUDY DESIGN: In vivo experiment. METHODS: Venous blood samples from 10 Arabian horses were taken before and after a 120 km long endurance ride to isolate the RNA and perform the high-throughput NGS transcriptome sequencing. RESULTS: The results, including KEGG (Kyoto Encyclopaedia of Genes and Genomes) and GO (Gene Ontology) analyses, allowed us to describe the most significantly upregulated-ARV1, DGAT2, LIPE, APOA2, MOGAT1, MOGAT2, GYS1, GYS2 and downregulated-ACACA, ACACB, FADS1, FADS2 genes involved in carbohydrate and lipid metabolism. Also, the increased expression of RAF1, KRAS and NRAS genes involved in the Insulin pathway and PI3K-Akt was shown. MAIN LIMITATIONS: Limited sample size, Arabians used for endurance racing were not compared to Arabians from other equestrian disciplines. CONCLUSIONS: This general insight into the processes described supports the thesis of the lipid-carbohydrates metabolism switch in endurance Arabian horses and provides the basis for further research.


Assuntos
Metabolismo dos Carboidratos , Insulinas , Metabolismo dos Lipídeos , Condicionamento Físico Animal , Resistência Física , Animais , Cavalos , Insulinas/metabolismo , Lipídeos , Fosfatidilinositol 3-Quinases
10.
Cancers (Basel) ; 15(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067318

RESUMO

Mitochondria, the main cellular power stations, are important modulators of redox-sensitive signaling pathways that may determine cell survival and cell death decisions. As mitochondrial function is essential for tumorigenesis and cancer progression, mitochondrial targeting has been proposed as an attractive anticancer strategy. In the present study, three mitochondria-targeted quercetin derivatives (mitQ3, 5, and 7) were synthesized and tested against six breast cancer cell lines with different mutation and receptor status, namely ER-positive MCF-7, HER2-positive SK-BR-3, and four triple-negative (TNBC) cells, i.e., MDA-MB-231, MDA-MB-468, BT-20, and Hs 578T cells. In general, the mito-quercetin response was modulated by the mutation status. In contrast to unmodified quercetin, 1 µM mitQ7 induced apoptosis in breast cancer cells. In MCF-7 cells, mitQ7-mediated apoptosis was potentiated under glucose-depleted conditions and was accompanied by elevated mitochondrial superoxide production, while AMPK activation-based energetic stress was associated with the alkalization of intracellular milieu and increased levels of NSUN4. Mito-quercetin also eliminated doxorubicin-induced senescent breast cancer cells, which was accompanied by the depolarization of mitochondrial transmembrane potential. Limited glucose availability also sensitized doxorubicin-induced senescent breast cancer cells to apoptosis. In conclusion, we show an increased cytotoxicity of mitochondria-targeted quercetin derivatives compared to unmodified quercetin against breast cancer cells with different mutation status that can be potentiated by modulating glucose availability.

11.
Mol Biol Rep ; 51(1): 8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085380

RESUMO

BACKGROUND: Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS: The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS: The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- ß pathway and pathways related to metabolism and synthesis of glycan.


Assuntos
MicroRNAs , Vitamina D , Animais , Suínos , Vitamina D/farmacologia , Vitamina D/metabolismo , Calcifediol/metabolismo , MicroRNAs/genética , Vitaminas , Colecalciferol/farmacologia , Suplementos Nutricionais/análise , Pulmão/metabolismo
12.
Funct Integr Genomics ; 23(4): 347, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030823

RESUMO

MicroRNAs are vital gene expression regulators, extensively studied worldwide. The large-scale characterization of miRNAomes is possible using next-generation sequencing (NGS). This technology offers great opportunities, but these cannot be fully exploited without proper and comprehensive bioinformatics analysis. This may be achieved by the use of reliable dedicated software; however, different programs may generate divergent results, leading to additional discrepancies. Thus, the aim of this study was to compare three bioinformatic algorithms dedicated to NGS-based microRNA profiling and validate them using an alternative method, namely RT-qPCR. The comparison analysis revealed differences in the number and sets of identified miRNAs. The qPCR confirmed the expression of the investigated microRNAs. The correlation analysis of NGS and qPCR measurements showed strong and significant coefficients for a subset of the tested miRNAs, including those detected by all three algorithms. Single miRNA variants (isomiRs) showed different levels of correlation with the qPCR data. The obtained results revealed the good performance of all tested programs, despite the observed differences. Moreover, they implied that some specific miRNAs may be differentially estimated using NGS technology and the qPCR method, regardless of the used bioinformatics software. These discrepancies may stem from many factors, including the composition of the isomiR profile, their abundance, length, and investigated species. In conclusion, in this study, we shed light on the bioinformatics aspects of miRNAome profiling, elucidating its complexity and pinpointing potential features influencing validation. Thus, qPCR validation results should be open to interpretation when not fully concordant with NGS results until further, additional analyses are conducted.


Assuntos
Benchmarking , MicroRNAs , MicroRNAs/genética , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional , Perfilação da Expressão Gênica/métodos
13.
Sci Rep ; 13(1): 15938, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743390

RESUMO

Mare endometrial fibrosis (endometrosis), is one of the main causes of equine infertility. Despite the high prevalence, both ethology, pathogenesis and the nature of its progression remain poorly understood. Recent studies have shown that microRNAs (miRNAs) are important regulators in multiple cellular processes and functions under physiological and pathological circumstances. In this article, we reported changes in miRNA expression at different stages of endometrosis and the effect of transforming growth factor (TGF)-ß1 on the expression of the most dysregulated miRNAs. We identified 1, 26, and 5 differentially expressed miRNAs (DEmiRs), in categories IIA (mild fibrosis), IIB (moderate fibrosis), and III (severe fibrosis) groups compared to category I (no fibrosis) endometria group, respectively (Padjusted < 0.05, log2FC ≥ 1.0/log2FC ≤ - 1.0). This study indicated the potential involvement of miRNAs in the regulation of the process associated to the development and progression of endometrosis. The functional enrichment analysis revealed, that DEmiRs target genes involved in the mitogen-activated protein kinases, Hippo, and phosphoinositide-3-kinase (PI3K)-Akt signalling pathways, focal adhesion, and extracellular matrix-receptor interaction. Moreover, we demonstrated that the most potent profibrotic cytokine-TGF-ß1-downregulated novel-eca-miR-42 (P < 0.05) expression in fibroblasts derived from endometria at early-stage endometrosis (category IIA).


Assuntos
MicroRNAs , Doenças Uterinas , Animais , Feminino , Cavalos , Humanos , Endométrio , Citocinas , Fibroblastos , MicroRNAs/genética
14.
Funct Integr Genomics ; 23(3): 268, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552338

RESUMO

Recent publications confirmed that long non-coding RNAs (lncRNAs) perform an essential function in gene-specific transcription regulation. Nevertheless, despite its important role, lncRNA has not yet been described in equine sarcoids, the skin neoplasia of horses. Therefore, the aim of this study is to deepen the knowledge about lncRNA expression in the pathogenesis of equine sarcoids and provide new insight into the regulatory function of lncRNA in the bovine papillomavirus-dependent neoplasia of horse dermal tissues. RNA sequencing (RNA-seq) data from 12 equine sarcoid samples and the corresponding controls were reanalyzed in this study. A total of 3396 differentially expressed (DE) lncRNAs and 128 DElncRNA-DE genes (DEGs) pairs were identified. Differentially expressed lncRNAs predicted target genes were enriched in pathways associated with inter alia the extracellular matrix disassembly and cancer pathways. Furthermore, methylation data from the same samples were integrated into the analysis, and 12 DElncRNAs were described as potentially disturbed by aberrant methylation. In conclusion, this study presents novel data about lncRNA's role in the pathogenesis of equine sarcoids.


Assuntos
RNA Longo não Codificante , Neoplasias Cutâneas , Cavalos/genética , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Metilação de DNA , Epigenoma , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/veterinária , Neoplasias Cutâneas/metabolismo
15.
Animals (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444025

RESUMO

Nanopore sequencing is a third-generation biopolymer sequencing technique that relies on monitoring the changes in an electrical current that occur as nucleic acids are passed through a protein nanopore. Increasing quality of reads generated by nanopore sequencing systems encourages their application in genome-wide polymorphism detection and genotyping. In this study, we employed nanopore sequencing to identify genome-wide polymorphisms in the horse genome. To reduce the size and complexity of genome fragments for sequencing in a simple and cost-efficient manner, we amplified random DNA fragments using a modified DOP-PCR and sequenced the resulting products using the MinION system. After initial filtering, this generated 28,426 polymorphisms, which were validated at a 3% error rate. Upon further filtering for polymorphism and reproducibility, we identified 9495 SNPs that reflected the horse population structure. To conclude, the use of nanopore sequencing, in conjunction with a genome enrichment step, is a promising tool that can be practical in a variety of applications, including genotyping, population genomics, association studies, linkage mapping, and potentially genomic selection.

16.
J Neurooncol ; 163(1): 61-69, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37169948

RESUMO

PURPOSE: We have previously shown that TRDMT1 methyltransferase is a regulator of chemotherapy-associated responses in glioblastoma cells. Despite the fact that glioblastoma, a common and malignant brain tumor, is widely characterized in terms of genetic and epigenetic markers, there are no data on TRDMT1-related changes in 5-methylcytosine pools in the genome. In the present study, the effect of TRDMT1 gene knockout (KO) on DNA methylome was analyzed. METHODS: CRISPR-based approach was used to obtain TRDMT1 KO glioblastoma cells. Total 5-methylcytosine levels in DNA, DNMT1 pools and DNMT activity were studied using ELISA. Reduced representation bisulfite sequencing (RRBS) was considered to comprehensively evaluate DNA methylome in glioblastoma cells with TRDMT1 KO. RESULTS: TRDMT1 KO cells were characterized by decreased levels of total 5-methylcytosine in DNA and DNMT1, and DNMT activity. RRBS-based methylome analysis revealed statistically significant differences in methylation-relevant DMS-linked genes in control cells compared to TRDMT1 KO cells. TRDMT1 KO-associated changes in DNA methylome may affect the activity of several processes and pathways such as telomere maintenance, cell cycle and longevity regulating pathway, proteostasis, DNA and RNA biology. CONCLUSIONS: TRDMT1 may be suggested as a novel modulator of gene expression by changes in DNA methylome that may affect cancer cell fates during chemotherapy. We postulate that the levels and mutation status of TRDMT1 should be considered as a prognostic marker and carefully monitored during glioblastoma progression.


Assuntos
Metilação de DNA , Glioblastoma , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Epigenoma , Glioblastoma/genética , 5-Metilcitosina/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo
17.
Biochimie ; 213: 100-113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37211255

RESUMO

DNA methylation is a key mechanism in transcription regulation, and aberrant methylation is a common and important mechanism in tumor initiation, maintenance, and progression. To find genes that are aberrantly regulated by altered methylation in horse sarcoids, we used reduced representation bisulfite sequencing (RRBS) accompanied by RNA sequencing (RNA-Seq) for methylome (whole genome DNA methylation sequencing) and transcriptome profiling, respectively. We found that the DNA methylation level was generally lower in lesion samples than in controls. In the analyzed samples, a total of 14,692 differentially methylated sites (DMSs) in the context of CpG (where cytosine and guanine are separated by a phosphate), and 11,712 differentially expressed genes (DEGs) were identified. The integration of the methylome and transcriptome data suggests that aberrant DNA methylation may be involved in the deregulation of expression of the 493 genes in equine sarcoid. Furthermore, enrichment analysis of the genes demonstrated the activation of multiple molecular pathways related to extracellular matrix (ECM), oxidative phosphorylation (OXPHOS), immune response, and disease processes that can be related to tumor progression. The results provide further insight into the epigenetic alterations in equine sarcoids and provide a valuable resource for follow-up studies to identify biomarkers for predicting susceptibility to this common condition in horses.


Assuntos
Neoplasias , Transcriptoma , Animais , Cavalos/genética , Epigenoma , Metilação de DNA , Perfilação da Expressão Gênica
18.
Pest Manag Sci ; 79(5): 1944-1962, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36655853

RESUMO

BACKGROUND: The continuous use of the herbicides contributes to the emergence of the resistant populations of numerous weed species that are tolerant to multiple herbicides with different modes of action (multiple resistance) which is provided by non-target-site resistance mechanisms. In this study, we addressed the question of rapid acquisition of herbicide resistance to pinoxaden (acetyl CoA carboxylase inhibitor) in Apera spica-venti, which endangers winter cereal crops and has high adaptation capabilities to inhabit many rural locations. To this end, de novo transcriptome of Apera spica-venti was assembled and RNA-sequencing analysis of plants resistant and susceptible to pinoxaden treated with this herbicide was performed. RESULTS: The obtained data showed that the prime candidate genes responsible for herbicide resistance were those encoding 3-ketoacyl-CoA synthase 12-like, UDP-glycosyltransferases (UGT) including UGT75K6, UGT75E2, UGT83A1-like, and glutathione S-transferases (GSTs) such as GSTU1 and GSTU6. Also, such highly accelerated herbicide resistance emergence may result from the enhanced constitutive expression of a wide range of genes involved in detoxification already before herbicide treatment and may also influence response to biotic stresses, which was assumed by the detection of expression changes in genes encoding defence-related proteins, including receptor kinase-like Xa21. Moreover, alterations in the expression of genes associated with methylation in non-treated herbicide-resistant populations were identified. CONCLUSION: The obtained results indicated genes that may be involved in herbicide resistance. Moreover, they provide valuable insight into the possible effect of resistance on the weed interaction with the other stresses by indicating pathways associated with both abiotic and biotic stresses. © 2023 Society of Chemical Industry.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Poaceae/genética , Perfilação da Expressão Gênica , Grão Comestível/metabolismo , Resistência a Herbicidas/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteínas de Plantas/genética
19.
Trop Anim Health Prod ; 55(1): 34, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609787

RESUMO

Gastrointestinal nematode (GINs) infections are one of the causative agents of health and economic issues in sheep production systems worldwide. Considerable genetic variations in resistance or susceptibility in different sheep breeds are documented, but published results are conflicting. Recent advances obtained by high-throughput technologies such as commercial SNP chips, whole-genome sequencing, or whole transcriptome profiling provide new insights into breeding for host resistance or nematode control at the genetic levels. This study aimed to identify potential biomarkers associated with the resistance to ovine GINs through a network analysis approach. Comprehensive gene and protein interaction networks were reconstructed for candidate genes involved in the most related immune pathways associated with resistance to ovine GINs using data mining from literature. Generally, 30 genes including CD53, CHIA, RELN, HRH1, EPS15, LRP8, ATP2B1, IL4, IL5, IL13, IL2RA, IL23R, TNFα, IFNγ, TBX21, SH3RF1, HERC2, PTPN1, BIN1, HERC5, C3AR1, NOS2, STAT5B, STAT4, CCL1, CCL8, VIL1, CXCR1, CXCR2, and CXCR4 located on chromosomes 1, 2, 3, 4, 5, 6, 11, 13, 19, and 20 have been found as containing effective regions with the most related pathways to nematode infections. The results obtained by network analysis showed two functional modules, belonging to the interleukins family (IL4, IL5, IL13, IL23R, and IL2RA) and chemokine receptors or ligands family (CXCR1, CXCR2, CXCR4, CCL1, and CCL8). Interleukins are a group of cytokines that are expressed by white blood cells with a major role in the immune system. Chemokines are also a family of chemoattractant cytokines which play a vital role in cell migration that influence the immune system by a process known as chemotaxis. The results provide useful information for the functional annotation of candidate genes related to parasite resistance and add new information towards a consensus on quantitative trait loci (QTLs) related to the incidence of nematode infections.


Assuntos
Gastroenteropatias , Nematoides , Infecções por Nematoides , Doenças dos Ovinos , Animais , Ovinos/genética , Interleucina-13 , Interleucina-4 , Interleucina-5 , Resistência à Doença/genética , Nematoides/genética , Infecções por Nematoides/genética , Infecções por Nematoides/veterinária , Gastroenteropatias/veterinária , Doenças dos Ovinos/parasitologia
20.
Meat Sci ; 197: 109071, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36512856

RESUMO

Skeletal muscle tissue is one of the potential targets for vitamin D actions. There are indications that vitamin D supplementation to swine has a positive effect on meat quality. However, these issues need further study, especially in terms of response to the use of different forms of vitamin D. We carried out a multi-purpose study to compare the effects of cholecalciferol and calcidiol on meat quality and muscle tissue transcriptome. Meat quality assessment and gene expression analysis were performed on longissimus dorsi samples collected from swine fed grower/finisher diets containing 2000 IU cholecalciferol/1500 IU cholecalciferol per kg (n = 8), 3000 IU cholecalciferol/2500 IU cholecalciferol per kg (n = 10), 2000 IU cholecalciferol +1000 IU calcidiol/1500 IU cholecaliferol +1000 IU calcidiol per kg (n = 8), and 2000 IU calcidiol/1500 IU calcidiol per kg (n = 8). The results suggest that increasing the dose of cholecalciferol and using calcidiol in the diet of finishers may improve meat texture parameters (shear force P = 0,014, toughness P = 0,048, cohesiveness P = 0,017, resilience P = 0,002). Shear force (68.46 N-51.42 N) and toughness (145.85 N-114.52 N) decreased the most under the effect of increasing cholecalciferol dosage. In turn, cohesiveness (0.60 N-0.65 N) and resilience (0.23 N-0.28 N) increased most strongly under the use of cholecalciferol+calcidiol. Moreover, the results indicate no significant effect of increasing cholecalciferol dose and use calcidiol in the swine diet on muscle tissue transcriptome.


Assuntos
Calcifediol , Colecalciferol , Animais , Suínos , Transcriptoma , Vitamina D , Músculo Esquelético/metabolismo , Vitaminas , Carne/análise , Ração Animal/análise , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA