Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23201, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163124

RESUMO

Chitosan nanocoatings (thickness range of 120-540 nm) were produced on glass, zinc and silicon substrates with dip-coating and spin coating techniques to study their pH-dependent wetting and swelling behaviour. The coatings were N-acetylated with the methanolic solution of acetic anhydride to increase the degree of acetylation from 36 % to 100 % (according to ATR-FTIR studies). The measured contact angles of Britton-Robinson (BR) buffer solutions (pH 6.0, 7.4 and 9.0) were lower on the acetylated surfaces (ca. 50°), than that of their native counterparts (ca. 70°) and does not depend on the pH. Contrary, contact angles on the native coating deteriorated 10°-15° with increasing the pH. In addition, for native coatings, the decrease of the contact angles over time also showed a pH dependence: at pH 9.0 the contact angle decreased by 7° in 10 min, while at pH 6.0 it decreased by 13° and at a much faster rate. The constraint swelling of the coatings in BR puffer solutions was studied in situ by scanning angle reflectometry. The swelling degree of the native coatings increased significantly with decreasing pH (from 250 % to 500 %) due to the increased number of protonated amino groups, while the swelling degree of acetylated coatings was ca. 160 % regardless of the pH. The barrier properties of the coatings were studied by electrochemical tests on zinc substrates. The analysis of polarization curves showed the more permeable character of the acetylated coatings despite the non-polar character of the bulk coating matrix. It can be concluded that in the case of native coatings, 49 % of the absorbed water is in bound form, which does not assist ion transport, while in the case of acetylated coatings, this value is only 33 %.

2.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067635

RESUMO

The recovery and reuse of the enantioselective catalysts produced by tedious work are important not only from the perspective of green chemistry, but also from the point of view of productivity. Some of the carbohydrate-based crown ethers prepared in our research group were able to generate significant asymmetric induction in certain cases. However, they were not recoverable after the synthesis. Therefore, we modified the most effective structure with a propargyl group so that it can be attached to a polymer with an azide-alkyne reaction. It was investigated whether the position of the bonding affects the activity of the crown ethers, hence, the propargyl group was introduced either to the side chain, to the anomeric center or to the benzylidene protecting group. To anchor the macrocycles, low molecular weight PVC was modified with azide groups in 4% and 10%, respectively. It was found that glucose-based crown ether bearing the propargyl group on the benzylidene unit and grafted to PVC in 4% has the highest activity regarding the enantioselectivity (77% ee). The catalyst was recoverable in the Michael addition of diethyl acetamidomalonate to nitrostyrene and it could be reused five times without the loss of enantioselectivity.

3.
Int J Biol Macromol ; 232: 123336, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36708905

RESUMO

Chitosan coatings of 353 ± 12 nm thickness were prepared on glass and zinc substrates by dip-coating method to study their barrier-behaviour. The coatings were chemically modified to increase their degree of acetylation (DA) from ca. 44 % up to ca. 98 % resulting a quasi-chitin coating. The effect of the acetylation reaction was studied by infrared spectroscopy, and the structural changes of the native and acetylated coatings were investigated by UV-Vis spectrophotometry and X-ray diffraction. The surface properties of the coated samples were characterized by wettability measurements - advancing water contact angle decreased from ca. 80° (native) to ca. 43° (fully acetylated) - and microscopic (SEM, AFM) studies. The barrier behaviour of the chitosan layer depending on the DA was evaluated by electrochemical impedance spectroscopy studies and with a special mesoporous silica - chitosan bilayer system by measuring the amount of dye (Rhodamine 6G) accumulated in the silica through the chitosan coating during an impregnation step. These methods showed significant decrease in the barrier-effect of the coatings with increasing DA (accumulation of approximately six times more dye and a reduction of charge transfer resistance by an order of magnitude), due to the structural and ionization changes in the coatings.


Assuntos
Quitosana , Quitosana/química , Quitina/química , Água , Propriedades de Superfície , Dióxido de Silício , Materiais Revestidos Biocompatíveis/química
4.
Molecules ; 24(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739591

RESUMO

Ammonium-polyphosphate (APP) was modified by microencapsulation with a bio-based sorbitol polyglycidyl ether (SPE)-type epoxy resin and used as a flame retardant additive in polylactic acid (PLA) matrix. The bioresin-encapsulated APP (MCAPP) particles were characterized using Fourier transform infrared (FTIR) spectroscopy and Raman mapping, particle size distribution was determined by processing of scanning electron microscopic (SEM) images. Interaction between the APP core and the bioresin shell was revealed by combined thermogravimetric analysis (TGA)­FTIR spectroscopy. The APP to SPE mass ratio of 10 to 2 was found to be optimal in terms of thermal, flammability, and mechanical properties of 15 wt% additive containing biocomposites. The bioresin shell effectively promotes the charring of the APP-loaded PLA composites, as found using TGA and cone calorimetry, and eliminates the flammable dripping of the specimens during the UL-94 vertical burning tests. Thus, the V-0 rating, the increased limiting oxygen index, and the 20% reduced peak of the heat release rate was reached compared to the effects of neat APP. Furthermore, better interfacial interaction of the MCAPP with PLA was indicated by differential scanning calorimetry and SEM observation. The stiff interphase resulted in increased modulus of these composites. Besides, microencapsulation provided improved water resistance to the flame retardant biopolymer system.


Assuntos
Compostos de Amônio/química , Poliésteres/química , Polifosfatos/química , Retardadores de Chama , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Polymers (Basel) ; 11(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30960287

RESUMO

We studied the effect of a multilevel presence of carbon-based reinforcements-a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))-on the fire performance, thermal conductivity, and mechanical properties of reference and flame-retarded epoxy resin (EP) composites. The inclusion of carbon fibers and flame retardant reduced the peak heat release rate (pHRR) of the epoxy resins. The extent to which the nanoreinforcements reduced the pHRR depended on their influence on thermal conductivity. Specifically, high thermal conductivity is advantageous at the early stages of degradation, but after ignition it may lead to more intensive degradation and a higher pHRR; especially in the reference samples without flame retardant. The lowest pHRR (130 kW/m²) and self-extinguishing V-0 UL-94 rating was achieved in the flame-retarded composite containing all three levels of carbon reinforcement (EP + CNF(CNT) + CNT + CF FR). The plasticizing effect of the liquid flame retardant impaired both the tensile and flexural properties; however, it significantly enhanced the impact resistance of the epoxy resin and its composites.

6.
Polymers (Basel) ; 10(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30961006

RESUMO

Low viscosity, potentially renewable aliphatic epoxy resins, appropriate for processing with injection techniques were flame retarded with the use of resorcinol bis(diphenyl phosphate) (RDP), acting predominantly in the gas phase, ammonium polyphosphate (APP), acting in the solid phase, and their combination. Samples of gradually increasing phosphorus (P) content (1%, 2%, 3%, 4%, and 5%) and mixed formulations with 2% P from APP and 2% P from RDP were prepared. The fire retardancy of matrix and carbon fibre reinforced samples was examined by limiting oxygen index (LOI), UL-94 tests, and mass loss calorimetry. The thermal stability of the matrices was investigated by thermogravimetric analysis, whereas the effect of flame retardants (FRs) on the crosslinking process and glass transition temperature was evaluated by differential scanning calorimetry in matrices and by dynamic mechanical analysis in composites. According to the results, although the trifunctional glycerol -based (GER) and the tetrafunctional pentaerythritol-based (PER) epoxy resins have a similar initial LOI and horizontal burning rate, GER has an approximately 1.5 times higher peak of heat release rate (pHRR) than PER. At least 4% P content is necessary to reach a reasonable improvement in fire performance in these resin transfer molding (RTM)-compatible systems and with the same FR-content PER reaches better fire performance. RDP has an early gas phase effect at the beginning of degradation, while later on the solid phase action of APP prevails, although in composites hindered by the reinforcing carbon fibres. In PER composites, the combination of APP and RDP had a synergistic effect, leading to a pHRR of 218 kW/m² and total heat release of 18.2 MJ/m².

7.
Materials (Basel) ; 10(5)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28772825

RESUMO

Carbon fibre reinforced flame-retarded bioepoxy composites were prepared from commercially available sorbitol polyglycidyl ether (SPE) cured with cycloaliphatic amine hardener. Samples containing 1, 2, and 3% phosphorus (P) were prepared using additive type flame retardants (FRs) resorcinol bis(diphenyl phosphate) (RDP), ammonium polyphosphate (APP), and their combinations. The fire performance of the composites was investigated by limiting oxygen index (LOI), UL-94 tests, and mass loss calorimetry. The effect of FRs on the glass transition temperature, and storage modulus was evaluated by dynamic mechanical analysis (DMA), while the mechanical performance was investigated by tensile, bending, and interlaminar shear measurements, as well as by Charpy impact test. In formulations containing both FRs, the presence of RDP, acting mainly in gas phase, ensured balanced gas and solid-phase mechanism leading to best overall fire performance. APP advantageously compensated the plasticizing (storage modulus and glass transition temperature decreasing) effect of RDP in combined formulations; furthermore, it led to increased tensile strength and Charpy impact energy.

8.
Polymers (Basel) ; 8(9)2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30974596

RESUMO

Flame-retarded bioepoxy resins were prepared with the application of commercially available sorbitol polyglycidyl ether (SPE). The additive-type flame retardancy of the cycloaliphatic amine-cured SPE was investigated. Three-percent phosphorus (P)-containing samples were prepared with the application of the liquid resorcinol bis(diphenyl phosphate) (RDP), the solid ammonium polyphosphate (APP), and by combining them. Synergistic effect was found between the inorganic APP and the organophosphorus RDP, when applied in combination: formulations applying RDP or APP alone showed increased limiting oxygen index (LOI) values, however, their UL-94 standard ratings remained HB. When the same amount of P originated from the two additives, V-0, self-extinguishing rating and LOI value of 34% (v/v) was reached. By the combined approach the heat release rate of SPE could be lowered by approximately 60%. The assumed balanced solid and gas phase mechanism was confirmed by thermogravimetric analysis, Fourier transform infrared spectrometry (FTIR) analysis (of the gases formed during laser pyrolysis), attenuated total reflection-infrared spectrometry (ATR-IR) analysis (of the charred residues), as well as by mechanical testing (of the char obtained after combustion).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA