Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792057

RESUMO

Coleus scutellarioides (L.) Benth. is a globally spread species, known for its characteristic spectacularly colorful leaves of decorative value. Thanks to its rich chemical composition, the plant is used in ethnopharmacology, and it is also regarded as having high medicinal potential. The application of in vitro cultures enables the acquisition of homogeneous certified material of high quality. Additionally, excluding the effect of biotic and abiotic factors on the plants is a way to fully recognize the influence of phytohormones on the plant morphology and the biosynthetic pathways of compound production. The best way to grow C. scutellarioides "Electric Lime" under in vitro conditions is to use the basic MS medium (Murashige and Skoog medium), enriched with naphthyl-1-acetic acid at a concentration of 0.5 mg dm-3. The analysis of volatile compounds demonstrated that the content of volatile compounds in the plants cultivated under in vivo conditions was expressed at a level of 2848.59 µg g-1, whereas in the plants bred in vitro without supplementation with phytohormones, the level was 8191.47 µg g-1. The highest content was noted for copaene, α-pinene, 1-octene-3-ol, α-selinene, sabinen, γ- and δ-cadinene, 3-octanol, and ß-pinene. Aroma profiling revealed a lack of boranyl acetate, 2-hexenal, and 2-hexen-1-ol in the plants cultivated under in vivo conditions. Differences were found in the volatile composition between plants bred in vivo and in vitro, with the most significant recorded for the contents of 1-octen-3-ol and 3-octanol. The addition of plant growth regulators into the basic medium under in vitro conditions affected the percentage ratio and contents of specific compounds in plant tissues. The most intense biosynthesis of volatile compounds took place in the plants cultivated on the medium enriched with NAA at 10,579.11 µg g-1, whereas the least intense was noted for plants cultivated on the medium supplemented with BA, where it was recorded at the level of 5610.02 µg g-1. So far, there has been no research published which would pertain to the profiling of volatile compounds performed using the SPME (solid-phase microextraction) technique. Moreover, the very few studies conducted on the chemical composition of these compounds do not mention the specific variety of C. scutellarioides under analysis.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/química
2.
Sci Rep ; 14(1): 6693, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509159

RESUMO

Coleus scutellarioides (L.) Benh. is a popular species in the world, known for its characteristic magnificent colourful leaves. The study has revealed that the contents of rosmarinic acid and caffeic acid are significantly higher in the plant tissues cultivated in vivo than when under in vitro conditions. The performed qualitative and quantitative analyses confirmed the presence (whose averaged content) of salvinorin A (6.65 µg/1 g of fresh plant) and salvinorin B (50.46 µg/1 g of fresh plant) in tissues of Coleus scutellarioides (L.) Benh. of 'Electric lime' variety. The greatest quantities of these compounds were recorded for plants cultivated in vitro on the MS medium enriched with NAA (naphthyl-1-acetic acid) at a concentration of 0.5 mg∙ dm-3. The research detected differences in the amounts of compounds between plants grown in vivo and those cultivated in vitro. Addition of plant growth regulators into the breeding medium under in vitro conditions was found affecting the amounts of compounds in plant tissues.


Assuntos
Ácidos Cafeicos , Coleus , Diterpenos Clerodânicos , Plectranthus , Ácido Rosmarínico , Melhoramento Vegetal , Reguladores de Crescimento de Plantas
3.
Foods ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38472781

RESUMO

Damask rose (Rosa damascena Mill.) is an aromatic industrial plant with different applications. Selection of cultivars with high-value metabolites such as flavonoids-with acceptable yields-can lead to elite cultivars for mass propagation in various industries. A field experiment was carried out in a randomized complete block design (RCBD) to evaluate metabolites and some yield-related morphological data. In the present investigation, for the first time 13 flavonoid components of nine Iranian damask rose cultivars were compared using LC-MS/MS. As a result, 13 flavonoids were identified, most of which were reported for the first time in rose petals. Phloridzin (72.59-375.92 mg/100 g dw), diosmetin (82.48-153.16 mg/100 g dw) and biochanin A (0-1066.89 mg/100 g dw) were the most abundant, followed by trans-chalcone (0-106.29 mg/100 g dw) and diosmin (41.55-84.57 mg/100 g dw). Levels of naringenin also ranged from 3.77 in B111 to 54.70 mg/100 g dw in C294, while luteolin varied from 4.37 in B111 to 28.87 mg/100 g dw in C294. The SPME Arrow technique also was applied to determine the real aroma of the studied cultivars. Phenethyl alcohol was the most abundant compound, in the range of 69.28 to 77.58%. The highest citronellol/geraniol (C/G) was observed in D234 (4.52%) and D237 (4.30%), while the lowest amount belonged to A104 (1.28%). Rose oxide, as the most crucial factor for odor, ranged from 0.06% in D237 to 0.15% in D211. Based on cluster and principal component analysis (PCA), D234 cultivar can be suggested as a promising cultivar with high yield, high C/G content and high rose oxide, while D234 and C294 were the most valuable cultivars in terms of flavonoids with high yield. Finally, these cultivars can be introduced for further breeding programs and industrial cultivation.

4.
Chemosphere ; 351: 141258, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253086

RESUMO

Torrefaction constitutes one of the promising technologies for the management of waste biomass and the production of high-carbon products for combustion, gasification, adsorption of pollutants or soil treatment. Unfortunately, waste biomass may be contaminated with toxic persistent organic pollutants, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) and dioxin-like biphenyls (dl-PCB). Literature does not provide consistent measurements on how the low-temperature thermochemical processing, such as torrefaction, affects the toxicity of biomass. This contribution assesses how a torrefaction treatment, conducted at 200 °C, modifies the toxicity due to PCDD/PCDF/dl-PCB in biomass. We deploy the XDS-CALUX biotest on five types of waste biomass (sewage sludge, tree bark, cattle manure, spent coffee ground, common reed), before and after treatment. The content of total dioxin- & biphenyl fraction compounds in the raw biomass, investigated in this study, varies from 0.14 to 3.67 pg BEQ·g-1d.m., and in the torrefied biomass between 0.17 and 6.00 pg BEQ·g-1d.m.; BEQ stands for bioanalytical equivalent. This increase is statistically insignificant at p = 0.05, taking into account all types of examined biomass. This proves that low-temperature torrefaction cannot detoxify biomass, i.e., chars, produced from biomass characterized by elevated concentration of PCDD/PCDF/dl-PCB, will reflect the contamination of the feedstocks. With respect to heavy metals, we conclude that only the content of Cd in biomass, and, to a lesser extent, the abundance of Cu and Fe, modify the toxicity of this material during its thermochemical treatment at low temperature.


Assuntos
Benzofuranos , Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animais , Bovinos , Biomassa , Bifenilos Policlorados/análise , Benzofuranos/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Esgotos , Bioensaio , Dibenzofuranos Policlorados
5.
Cells ; 12(23)2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-38067141

RESUMO

Overcoming drug resistance and specifically targeting cancer stem cells (CSCs) are critical challenges in improving cancer therapy. Nowadays, the use of novel and native medicinal plants can provide new sources for further investigations for this purpose. The aim of this study was to assess the potential of S. bachtiarica, an endemic plant with diverse medicinal applications, in suppressing and targeting cancer and cancer stem cells in glioblastoma and breast cancer. The effect of S. bachtiarica on viability, migration, invasion, and clonogenic potential of MDAMB-231 and U87-MG cells was assessed in both two- and three-dimensional cell culture models. Additionally, we evaluated its effects on the self-renewal capacity of mammospheres. The experimental outcomes indicated that S. bachtiarica decreased the viability and growth rate of cells and spheroids by inducing apoptosis and inhibited colony formation, migration, and invasion of cells and spheroids. Additionally, colony and sphere-forming ability, as well as the expression of genes associated with EMT and stemness were reduced in mammospheres treated with S. bachtiarica. In conclusion, this study provided valuable insights into the anti-cancer effects of S. bachtiarica, particularly in relation to breast CSCs. Therefore, S. bachtiarica may be a potential adjuvant for the treatment of cancer.


Assuntos
Neoplasias da Mama , Glioblastoma , Satureja , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Apoptose , Células-Tronco Neoplásicas/metabolismo
6.
Front Plant Sci ; 14: 1281688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098786

RESUMO

Drought due to climate change or reduced precipitation is one of the main factors limiting the growth and establishment of plants and is one of the most critical challenges facing humans. To investigate the effect of different levels of drought stress on some pine species, this research was carried out as a factorial experiment using two factors and a completely randomized design. It included five populations of four pine species (Pinus brutia Ten. var. eldarica, P. nigra Arnold, P. mugo, and P. banksiana Lamb (including populations 8310055 and 8960049), and three levels of irrigation (100%, 75%, or 50% FC, denoted as normal, mild or intense drought stress, respectively) with three replicates. The findings showed that, photosynthetic pigments, relative water content, visual quality, the content of nutrients, protein content, and fresh and dry weight all decreased significantly when plants were exposed to intense drought stress. However, raised proline levels, electrolyte leakage percentage, soluble sugars levels, and antioxidant enzyme activity. We detected a decline in most growth traits when comparing mild drought stress conditions to normal irrigation, yet acceptable quality seedlings when compared to intense drought stress. Intense drought stress had a substantial impact on many pine seedlings. PCA results showed that among different pine species, the level of resistance to drought is as follows: P. mugo> P. brutia var. eldarica> P. nigra> P. banksiana 8310055> P. banksiana 8960049. Our novel finding was that, P. mugo is a resistant species in arid and semi-arid regions, and P. banksiana species, especially its population of 8960049, is sensitive.

7.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138578

RESUMO

Hemp is used as a source of fiber, oil and bioactive substances including volatile and cannabinoid-containing substances. This paper presents, for the first time, results on the evaluation of drying methods (convective, vacuum-microwave and combined convective pre-drying and vacuum-microwave finishing drying) of hemp leaves on the qualitative and quantitative changes in secondary metabolites, including essential oils, cannabinoids and sterols. A ranking and descriptive test of hemp leaves was also performed. Drying kinetics was presented using three models, including logarithmic, Midilli and modified Page. The SPME-Arrow technique was used to determine 41 volatile compounds, of which caryophyllene, ß-myrcene and α-humulene were dominant in dried and fresh leaves. Regarding the essential oils obtained, 64 were identified, with caryophyllene, humulene epoxide II and limonene being the dominant ones. For preserving the highest amount of oils, the best method was the convective pre-drying followed by vacuum-microwave finishing drying (CD60-VMD) combined method, where the retention of volatile compounds was 36.08%, whereas the CD70 and 240-VMD methods resulted in the highest loss of 83%. The predominant cannabinoids in fresh hemp leaves were CBDA 6.05 and CBD 2.19 mg g-1. Drying caused no change in the cannabinoid profile of the plant material. ß-Sitosterol, campesterol and lupeol were dominant in the phytosterol and triterpene fractions. No changes in either quality or quantity were observed in any of the variants found.


Assuntos
Canabinoides , Cannabis , Óleos Voláteis , Cannabis/química , Folhas de Planta/química , Óleos Voláteis/química , Canabinoides/química
8.
Int J Biol Macromol ; 253(Pt 7): 127380, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838108

RESUMO

Biflavonoids (BFs) are a group of polyphenols that have a unique biochemical structure. One of the key biomedical mechanisms that BFs can have high potential in managing Diabetes mellitus (DM) is α-glucosidase inhibition. Normally, elevated blood glucose levels are caused by high absorption of glucose in the epithelium of the small intestine. Since α-glucosidase helps increase the absorption of glucose in the small intestine in the final stage of glycan catabolism, inhibition of this essential biochemical process in diabetic patients can be considered a suitable approach in the treatment of this disease. The interaction between the BFs and α-glucosidase are still not clear, and need to be deeply investigated. Herein, the aim is to identify BFs with strong α-glucosidase inhibitory activity. Using docking-based virtual screening approach, the potential binding affinity of 18 selected BFs to α-glucosidase was evaluated. The dynamic activity and stability of α-glucosidase-BFs complexes were then measured by molecular dynamics simulation (MDs). "Strychnobiflavone" showed the best score in α-glucosidase inhibition. Arg315 and Phe303 involved in the interactions of α-glucosidase-strychnobiflavone complex through cation-π and π-π stacking, respectively. Based on in vitro kinetic studies, it was determined that the type of inhibition of "strychnobiflavone" corresponds to the pattern of mixed inhibitors. Furthermore, details of the interactions between strychnobiflavone and α-glucosidase were performed by in silico secondary structure content analysis. The findings showed when "strychnobifone" binds to the enzyme, significant alterations occur in the enzyme conformation affecting its catalytic activity. In general, the findings highlighted the potential of "strychnobiflavone" as a promising candidate for the treatment of diabetes mellitus through α-glucosidase inhibition. Further in vitro and in vivo studies have to confirm the therapeutic benefits of "strychnobiflavone" in conformational diseases such as diabetes mellitus.


Assuntos
Biflavonoides , Diabetes Mellitus , Humanos , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Cinética , Biflavonoides/farmacologia , Glucose
9.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895107

RESUMO

In this research, a HPLC analysis, along with transcriptomics tools, was applied to evaluate chitosan and water stress for the prediction of phenolic flavonoids patterns and terpenoid components accumulation in Salvia abrotanoides Karel and S. yangii. The results indicated that the tanshinone contents under drought stress conditions increased 4.2-fold with increasing drought stress intensity in both species. The rosmarinic acid content in the leaves varied from 0.038 to 11.43 mg/g DW. In addition, the flavonoid content was increased (1.8 and 1.4-fold) under mild water deficit conditions with a moderate concentration of chitosan (100 mg L-1). The application of foliar chitosan at 100 and 200 mg L-1 under well-watered and mild stress conditions led to increases in hydroxyl cryptotanshinone (OH-CT) and cryptotanshinone (CT) contents as the major terpenoid components in both species. The expressions of the studied genes (DXS2, HMGR, KSL, 4CL, and TAT) were also noticeably induced by water deficit and variably modulated by the treatment with chitosan. According to our findings, both the drought stress and the application of foliar chitosan altered the expression levels of certain genes. Specifically, we observed changes in the expression levels of DXS and HMGR, which are upstream genes in the MEP and MVA pathways, respectively. Additionally, the expression level of KSL, a downstream gene involved in diterpenoid synthesis, was also affected. Finally, the present investigation confirmed that chitosan treatments and water stress were affected in both the methylerythritol phosphate pathway (MEP) and mevalonate (MVA) pathways, but their commitment to the production of other isoprenoids has to be considered and discussed.


Assuntos
Quitosana , Salvia , Terpenos/metabolismo , Salvia/genética , Salvia/metabolismo , Transcriptoma , Desidratação , Flavonoides
10.
Sci Rep ; 13(1): 16152, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752295

RESUMO

In the present research, response parameters such as specific energy consumption (SEC), thermal efficiency (TE), energy efficiency (EF), drying time (DT), greenhouse gas (GHG) emission (such as CO2 and NOx), and quality features (color variation and shrinkage) were modeled by response surface methodology (RSM) for apple slices dried in a microwave dryer under ultrasonication (30 â„ƒ-10 min) and blanching (80 °C-2 min) pretreatments. Also, RSM was applied to optimize two independent parameters including microwave power and sample thickness in the levels 100, 200, and 300 W and 2, 4, and 6 mm, respectively. The results indicated the significant influence (P < 0.01) of the independent parameters on the response parameters. The vales of SEC, DT, GHG emission, shrinkage, and color difference were linearly decreased with the declining sample thickness and increasing microwave power, while the energy and thermal efficiencies were increased by a quadratic equation. The use of ultrasonication and blanching pretreatments decreased the SEC, GHG emissions, and DT; while improving the quality of the samples as compared to the non-treated slices. The optimization results showed the optimal drying times (31.55, 82.19, and 50.55 min), SEC (3.42, 10.07, and 4.37 MJ/kg), CO2 with natural gas (1539.75, 1518.75, and 4585 g), CO2 with gas oil (3662.53, 2099.25, 2721.25 g), NOx with natural gas (10.094, 9.956, and 12.906 g), and NOx with gas oil (12.934, 12.758, and 16.538 g) at a microwave power of 300 W and sample thickness of 2 mm with desirability of 0.921, 0.935, and 0.916 for control samples, ultrasonicated, and blanched, respectively.

11.
J Oleo Sci ; 72(8): 787-797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532567

RESUMO

Inhibition of α-amylase, α-glucosidase, and advanced glycation end products (AGEs) is considered a prospective method for the prevention of type II diabetes. As two flavonoids obtained from fruits, swertisin (SW) and apigenin (AP) have similar structures and display various pharmacological properties. To examine the effects of flavonoid structure on inhibition of AGEs adducts and carbohydrate hydrolyzing enzymes activity, molecular docking and molecular dynamic simulations (MDs) were used. The molecular docking method was performed by the Autodock program, and the ligand that showed the most negative binding energy was selected for further investigation. SW showed the potential ability to inhibit the AGEs formation and carbohydrate hydrolyzing enzymes activity. The stability of the receptor/SW complex was evaluated by MDs. Based on the findings of the present study, it was found that SW has the potential to reduce glycation and delay the activity of α-amylase and α-glucosidase enzymes.


Assuntos
Diabetes Mellitus Tipo 2 , Flavonoides , Humanos , alfa-Amilases , alfa-Glucosidases/metabolismo , Carboidratos , Diabetes Mellitus Tipo 2/prevenção & controle , Flavonoides/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Glicosídeos , Simulação de Acoplamento Molecular , Amido
12.
Molecules ; 28(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630391

RESUMO

Kelussia odoratissima Mozaff. is a species of Apiaceae endemic to the Zagros Mountains in Iran. In the present investigation, for the first time, the polyphenolic compounds and flavonoids of its leaves were determined by liquid chromatography-mass spectrometry (LC-MS). As a result, p-coumaric acid, ferulic acid, caffeic acid, chlorogenic acid, acetyl phloroglucinol, vanillic acid, m-coumaric acid, and 4-methylsiringol were determined as the main phenolic compounds, while 3-hydroxyflavone, flavone, quercetin, rutin, neohesperidin, polydatin, and diosmin were the main flavonoid components, of which chlorogenic acid (303.08 µL/gDW), neohesperidin (38.37 µL/gDw), and diosmin (28.62 µL/gDW) were the most abundant. Solid-phase microextraction (SPME) was also used to determine the chemical compounds. Based on SPME, (Z)-undec-6-en-2-one (17.48%) and (Z)-butylidenephthalide (4.348%) were the major components. Based on GC-MS analyses, (Z)-ligustilide was the main compound; however, some new compounds were also determined, including 3-ethylisobenzofuran-1 (3H)-one, (E)-ligugustilide, and E-n-butylidene phthalide. Also, for the first time, we have identified EOs ethyl and isobutyl phthalides on the basis of the obtained EI-MS spectra. Finally, the fragmentation of phthalides is also discussed in this research.


Assuntos
Apiaceae , Diosmina , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Folhas de Planta , Flavonoides
13.
Animals (Basel) ; 13(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37443953

RESUMO

The purpose of the study was to assess the effects of different doses of a phytobiotic mixture on selected production parameters and meat quality and to assess the residue of the preparation in tissues and the possible toxic effects in broiler chickens. Broiler chicks aged 160 days, divided into four equal groups, were supplemented with the phytobiotic mixture at different doses, D1-0.5 mL/L, D2-1 mL/L, and D3-2 mL/L, four times during a 42-day trial. There were no statistically significant differences in weight gain per week of life and mortality in the birds. The study also demonstrated that the use of the mixture of phytobiotics had no significant effect on colour, pH, WHC, and natural leakage. However, a beneficial effect of the additive was found in the group treated with a dose of 1 mL/L, where less thermal leakage from the meat was demonstrated. Furthermore, significant differences in the change in thigh muscle tenderness were also observed. In the histopathological analysis of the liver no significant differences were observed. In addition, no residues of the mixture or its metabolites were found in the tissues analysed. In conclusion, the proposed scheme of administration of the phytobiotic additive, regardless of the dose, does not cause pathological changes in organs and does not carry the risk of residues of the product in tissues intended for human consumption.

14.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445619

RESUMO

In the present research, 28 populations of ajowan (Trachyspermum ammi L.) were evaluated for agro-morphological traits and essential oil yield in two consecutive years. Then, selected ajowan populations from these two years were used for further morphophysiological and biochemical studies under different salinity levels (control, 60, 90, and 120 mM NaCl). The main components of the oil were thymol (32.7-54.29%), γ-terpinene (21.71-32.81%), and p-cymene (18.74-26.16%). Salt stress caused an increase in essential oil content in the Esfahfo and Qazvin populations. The highest total phenolic and flavonoid contents were found in the Arak population grown in 60 mM NaCl (183.83 mg TAE g-1 DW) and the Yazd population grown in 90 mM NaCl (5.94 mg QE g-1 DW). Moreover, the Yazd population exhibited the strongest antioxidant activity based on DPPH (IC50 = 1566 µg/mL) under 60 mM NaCl and the highest reducing power (0.69 nm) under 120 mM NaCl. The results revealed that low and moderate salt stress improves the phytochemicals of ajowan seeds, which are useful for pharmaceutical and food applications. In this research, some morphological traits, as well as essential oil yield, were evaluated in open pollinated versus self-pollinated plants. As a result, plant height, number of flowering branches, and crown diameter significantly decreased in some populations, while a significant increase was obtained for number of flowers per umbel and seed numbers per umbel. Finally, self-pollination of ajowan might provide new insights for further breeding programs to increase oil or thymol content in ajowan.


Assuntos
Ammi , Apiaceae , Carum , Óleos Voláteis , Carum/química , Timol , Ammi/química , Polinização , Cloreto de Sódio , Melhoramento Vegetal , Apiaceae/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Compostos Fitoquímicos , Estresse Salino , Genótipo
15.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447321

RESUMO

According to the WHO, the number of overweight people (BMI ≥ 25) and obese people (BMI ≥ 30) is constantly growing. On the other hand, the number of elderly people (≥60 years old) in 2020 reached 1.4 billion worldwide. Both mentioned groups demonstrate their individual and characteristic appetite disorders. In light of the side effects of appetite stimulating drugs, which interfere with diabetics, hypertension and thrombosis medicines or diet supplements with doubtful effectiveness in reducing appetite, new and natural alternatives are highly demanded. Therefore, the present study focusses on the search for natural food aromas, which may have potential for appetite regulation. A survey was carried out among consumers with excess body weight (BMI ≥ 25) and the elderly (≥60 years old). Food products and meals pointed out by the survey participants were subjected to volatile analysis by HS-SPME Arrow followed by GC-MS. As a result, a group of volatiles and their odor characteristic were determined for appetite stimulation or reduction, which may suggest that the actual composition of food aroma is more significant than the character of the aroma. Those results may be a basis for designing appetite regulating agents, in which the mechanism of action will be based only on olfaction activity.


Assuntos
Apetite , Odorantes , Humanos , Idoso , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Regulação do Apetite , Percepção
16.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375327

RESUMO

The use of by-products from the agri-food industry is a promising approach for production of value-added, polyphenol-rich dietary supplements or natural pharmaceutical preparations. During pistachio nut processing, a great amount of husk is removed, leaving large biomass for potential re-use. The present study compares antiglycative, antioxidant, and antifungal activities as well as nutritional values of 12 genotypes belonging to four pistachio cultivars. Antioxidant activity was measured using DPPH and ABTS assays. Antiglycative activity was evaluated as inhibition of advanced glycation end product (AGE) formation in the bovine serum albumin/methylglyoxal model. HPLC analysis was performed to determine the major phenolic compounds. Cyanidin-3-O-galactoside (120.81-181.94 mg/100 g DW), gallic acid (27.89-45.25), catechin (7.2-11.01), and eriodictyol-7-O-glucoside (7.23-16.02) were the major components. Among genotypes, the highest total flavonol content (14.8 mg quercetin equivalents/g DW) and total phenolic content (262 mg tannic acid equivalent/g DW) were in KAL1 (Kaleghouchi) and FAN2 (Fandoghi), respectively. The highest antioxidant (EC50 = 375 µg/mL) and anti-glycative activities were obtained for Fan1. Furthermore, potent inhibitory activity against Candida species was recorded with MIC values of 3.12-12.5 µg/mL. The oil content ranged from 5.4% in Fan2 to 7.6% in Akb1. The nutritional parameters of the tested cultivars were highly variable: crude protein (9.8-15.8%), ADF (acid detergent fiber 11.9-18.2%), NDF (neutral detergent fiber, 14.8-25.6%), and condensed tannins (1.74-2.86%). Finally, cyanidin-3-O-galactoside was considered an effective compound responsible for antioxidant and anti-glycative activities.


Assuntos
Antioxidantes , Pistacia , Antioxidantes/farmacologia , Antioxidantes/química , Pistacia/química , Candida , Detergentes , Ácido Gálico/farmacologia , Fenóis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
17.
Molecules ; 28(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175252

RESUMO

The pitaya (dragon fruit) Hylocereus is a genus which belongs to the Cactaceae family. It is native to Mexico, occurring also in other regions of Central and South America. Pitaya fruit is mainly intended for consumption and for this reason the species is grown commercially. The fruit is a rich source of vitamins, biologically active compounds, and dietary fibre. Using in vitro culture can accelerate the process of reproduction and growth of pitaya plants. Profiling of volatile compounds contained in the stem of Hylocereus undatus was carried out using the SPME-GC-MS technique. The main compounds present were hexanal, 2-hexenal and 1-hexanol. The results showed differences in the occurrence of volatile compounds between plants grown in media with an addition of BA (6-benzylaminopurine) and IAA (indole-3-acetic acid), which have been used as plant growth regulators. Statistically significant differences between the contents of volatile compounds were observed in the case of 2-hexenal and 1-hexanol. The effect of BA on reducing the amount of volatile compounds was observed. However, introduction of IAA to the in vitro medium resulted in more compounds being synthesized. This study is the first to describe the volatile compounds in the pitaya stem. The results indicate that plant hormones are able to modify the profile of volatile compounds.


Assuntos
Cactaceae , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Hexanóis , Frutas
18.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175125

RESUMO

Oregano and marjoram are important aromatic spices in the food industry, as well as medicinal plants with remarkable antioxidant properties. Despite their popularity, little is known about treatments that would influence the antioxidant capacity of essential oils. In this study, different spectra of LED light, namely blue, red, white, blue-red, and natural ambient light as a control, were applied to assess the essential oil content, composition, flavonoid, phenolic, and antioxidant capacity of oregano and marjoram. GC-MS analysis revealed thymol, terpinen-4-ol, sabinene, linalool, p-cymene, and γ-terpinene as the main compounds. In oregano, the thymol content ranged from 11.91% to 48.26%, while in marjoram it varied from 17.47% to 35.06% in different samples. In oregano and marjoram, the highest phenolic contents were in blue (61.26 mg of tannic acid E/g of DW) and in white (65.18 mg of TAE/g of DW) light, respectively, while blue-red illumination caused the highest increase in total flavonoids. The antioxidant activity of oregano and marjoram extract was evaluated using two food model systems, including DPPH and ß-carotene bleaching. The highest antioxidant capacity was obtained in control light in oregano and blue-red light in marjoram. The results provide information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers.


Assuntos
Óleos Voláteis , Origanum , Óleos Voláteis/química , Antioxidantes/química , Origanum/química , Timol , Extratos Vegetais/química , Fenóis/análise
19.
Foods ; 12(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37238875

RESUMO

The quality of food, considering increasing consumer demands and competition among producers, is a highly important issue. Quality concerns are also applicable to the odor quality of herbs and spices (HSs). Meanwhile, HSs commonly are graded based on their essential oils (EOs) content and analysis; but does the instrumental analysis really provide general information about the HSs sensory quality? Three chemotypes of Mentha spp. were used in the present study. From samples diversified by convective drying at different temperatures, EOs were hydrodistillated and analyzed by enantioselective GC-MS; moreover, the source plant material's volatile profile was analyzed by the HS-SPME technique. The instrumental analysis was confronted with the results of the sensory panel. Changes in enantiomeric composition were observed during the drying process, although no clear correlations or trends could be found for individual chiral components. Furthermore, even with significant differences in particular volatiles' contribution to plants' EOs and their volatile profiles, judges were not able to match the sample EOs and plant samples with sufficient effectiveness (~40%). Based on those results, we suggest that volatile enantiomeric distribution does not have an actual influence on odor quality and that the sensory analysis should not be replaced with instrumental analysis, which cannot predict general sensory quality.

20.
Food Sci Nutr ; 11(5): 2166-2175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181321

RESUMO

Visible-near-infrared spectroscopy is known for its rapid and nondestructive characteristics designed to predict leaf chlorophyll content (LCC) of winter wheat. It is believed that the nonlinear technique is preferable to the linear method. The canopy reflectance was applied to generate the LCC prediction model. To accomplish such an objective, artificial neural networks (ANN), along with partial least squares regression (PLSR), nonlinear, and linear evaluation methods have been employed and evaluated to predict wheat LCC. The wheat leaves reflectance spectra were initially preprocessed using Savitzky-Golay smoothing, differentiation (first derivative), SNV (Standard Normal Variate), MSC (Multiplicative Scatter Correction), and their combinations. Afterward, a model for LCC using the reflectance spectra was developed by means of the PLS and ANN. The vis/NIR spectroscopy samples at the 350-1400 nm wavelength were preprocessed using S. Golay smoothing, D1, SNV, and MSC. The preprocessing with SNV-S.G, followed by PLS and ANN modeling, was able to achieve the most accurate prediction, with the correlation coefficient of 0.92 and 0.97, along with the root mean square error of 0.9131 and 0.7305 receptivity. The experimental findings also revealed that the suggested method utilizing the PLS and ANN model with SNV-S. G preprocessing was practically feasible to estimate the chlorophyll content of a particular winter wheat leaf area according to the visible and near-infrared spectroscopy sensors, achieving improved precision and accuracy. The nonlinear technique was proposed as a more refined technique for LCC estimating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA