Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805785

RESUMO

Osteoporosis is a worldwide chronic disease characterized by increasing bone fragility and fracture likelihood. In the treatment of bone defects, materials based on calcium phosphates (CaPs) are used due to their high resemblance to bone mineral, their non-toxicity, and their affinity to ionic modifications and increasing osteogenic properties. Moreover, CaPs, especially hydroxyapatite (HA), can be successfully used as a vehicle for local drug delivery. Therefore, the aim of this work was to fabricate hydroxyapatite-based composite beads for potential use as local carriers for raloxifene. HA powder, modified with magnesium and silicon ions (Mg,Si-HA) (both of which play beneficial roles in bone formation), was used to prepare composite beads. As an organic matrix, sodium alginate with chondroitin sulphate and/or keratin was applied. Cross-linking of beads containing raloxifene hydrochloride (RAL) was carried out with Mg ions in order to additionally increase the concentration of this element on the material surface. The morphology and porosity of three different types of beads obtained in this work were characterized by scanning electron microscopy (SEM) and mercury intrusion porosimetry, respectively. The Mg and Si released from the Mg,Si-HA powder and from the beads were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). In vitro RAL release profiles were investigated for 12 weeks and studied using UV/Vis spectroscopy. The beads were also subjected to in vitro biological tests on osteoblast and osteosarcoma cell lines. All the obtained beads revealed a spherical shape with a rough, porous surface. The beads based on chondroitin sulphate and keratin (CS/KER-RAL) with the lowest porosity resulted in the highest resistance to crushing. Results revealed that these beads possessed the most sustained drug release and no burst release effect. Based on the results, it was possible to select the optimal bead composition, consisting of a mixture of chondroitin sulphate and keratin.


Assuntos
Alginatos/química , Conservadores da Densidade Óssea/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Durapatita/química , Silicatos de Magnésio/química , Cloridrato de Raloxifeno/farmacologia , Conservadores da Densidade Óssea/metabolismo , Regeneração Óssea/fisiologia , Osso e Ossos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sulfatos de Condroitina/química , Liberação Controlada de Fármacos , Humanos , Queratinas/química , Cinética , Nanopartículas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Porosidade , Cloridrato de Raloxifeno/metabolismo
2.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271907

RESUMO

Powders of α-TCP containing various amounts of silicon were synthesized by two different methods: Wet chemical precipitation and solid-state synthesis. The obtained powders were then physico-chemically studied using different methods: Scanning and transmission electron microscopy (TEM and SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffractometry (PXRD), infrared and Raman spectroscopies (FT-IR and R), and solid-state nuclear magnetic resonance (ssNMR). The study showed that the method of synthesis affects the morphology of the obtained particles, the homogeneity of crystalline phase and the efficiency of Si substitution. Solid-state synthesis leads to particles with a low tendency to agglomerate compared to the precipitation method. However, the powders obtained by the solid-state method are less homogeneous and contain a significant amount of other crystalline phase, silicocarnotite (up to 7.33%). Moreover, the microcrystals from this method are more disordered. This might be caused by more efficient substitution of silicate ions: The silicon content of the samples obtained by the solid-state method is almost equal to the nominal values.


Assuntos
Fosfatos de Cálcio/química , Técnicas de Química Sintética , Silicatos/química , Silício/química , Fosfatos de Cálcio/síntese química , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Materials (Basel) ; 12(16)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408945

RESUMO

Silicated hydroxyapatite powders enriched with small amounts of manganese (Mn2+) cations were synthesized via two different methods: precipitation in aqueous solution and the solid-state method. The source of Mn2+ ions was manganese acetate, while silicon was incorporated using two different reagents: silicon acetate and sodium metasilicate. Powder X-ray diffraction (PXRD) analysis showed that the powders obtained via the precipitation method consisted of single-phase nanocrystalline hydroxyapatite. In contrast, samples obtained via the solid-state method were heterogenous and contaminated with other phases, (i.e., calcium oxide, calcium hydroxide, and silicocarnotite) arising during thermal treatment. The transmission electron microscope (TEM) images showed powders obtained via the precipitation method were nanosized and elongated, while solid-state synthesis produced spherical microcrystals. The phase identification was complemented by Fourier transform infrared spectroscopy (FTIR). An in-depth analysis via solid-state nuclear magnetic resonance (ssNMR) was carried out, using phosphorus 31P single-pulse Bloch decay (BD) (31P BD) and cross-polarization (CP) experiments from protons to silicon-29 nuclei (1H → 29Si CP). The elemental measurements carried out using wavelength-dispersive X-ray fluorescence (WD-XRF) showed that the efficiency of introducing manganese and silicon ions was between 45% and 95%, depending on the synthesis method and the reagents. Preliminary biological tests on the bacteria Allivibrio fisheri (Microtox®) and the protozoan Spirostomum ambiguum (Spirotox) showed no toxic effect in any of the samples. The obtained materials may find potential application in regenerative medicine, bone implantology, and orthopedics as bone substitutes or implant coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA