Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(13): e2310197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905376

RESUMO

Obtaining hierarchical structures with arbitrarily controlled chirality remains a challenge. Here, thin films featuring chiroptically bipolar patterns are produced by a device utilizing microscale photothermal re-melting of materials exhibiting chirality synchronization. This device operates autonomously, guided by an algorithm that facilitates the homochiral growth of supramolecular organic helices through controlling their re-melting. The chirality synchronization phenomena of constitutionally achiral molecules grants availability of both handednesses of the helices, enabling unrestricted chiral writing in the film. The collective chiroptical response of assembled molecules is utilised to guide the patterning process, creating a foundation for optically secured information. The established methodology enables achieving dissymmetry factor values for circular dichroism (CD) a magnitude higher than previously reported, as confirmed with state-of-the-art, synchrotron-based Mueller matrix polarimetry (MMP). Moreover, the developed method is extended to nanocomposites comprising gold nanoparticles, providing the opportunity to tune the CD toward the plasmonic region. This strategic application of photothermal processing, specifically laser-directed melting, uncovers the potential to broaden the selection of nanostructured materials with precisely designed functionalities for photonic applications.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34578613

RESUMO

Self-assembly of metal nanoparticles has applications in the fabrication of optically active materials. Here, we introduce a facile strategy for the fabrication of films of binary nanoparticle assemblies. Dynamic control over the configuration of gold nanorods and nanospheres is achieved via the melting of bound and unbound fractions of liquid-crystal-like nanoparticle ligands. This approach provides a route for the preparation of hierarchical nanoparticle superstructures with applications in reversibly switchable, visible-range plasmonic technologies.

3.
J Am Chem Soc ; 142(44): 18814-18825, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990433

RESUMO

Solution-phase self-assembly of anisotropic nanoparticles into complex 2D and 3D assemblies is one of the most promising strategies toward obtaining nanoparticle-based materials and devices with unique optical properties at the macroscale. However, controlling this process with single-particle precision is highly demanding, mostly due to insufficient understanding of the self-assembly process at the nanoscale. We report the use of in situ environmental scanning transmission electron microscopy (WetSTEM), combined with UV/vis spectroscopy, small-angle X-ray diffraction (SAXRD) and multiscale modeling, to draw a detailed picture of the dynamics of vertically aligned assemblies of gold nanorods. Detailed understanding of the self-assembly/disassembly mechanisms is obtained from real-time observations, which provide direct evidence of the colloidal stability of side-to-side nanorod clusters. Structural details and the forces governing the disassembly process are revealed with single particle resolution as well as in bulk samples, by combined experimental and theoretical modeling. In particular, this study provides unique information on the evolution of the orientational order of nanorods within side-to-side 2D assemblies and shows that both electrostatic (at the nanoscale) and thermal (in bulk) stimuli can be used to drive the process. These results not only give insight into the interactions between nanorods and the stability of their assemblies, thereby assisting the design of ordered, anisotropic nanomaterials but also broaden the available toolbox for in situ tracking of nanoparticle behavior at the single-particle level.

4.
ACS Nano ; 14(10): 12918-12928, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32886482

RESUMO

Mirror symmetry breaking in materials is a fascinating phenomenon that has practical implications for various optoelectronic technologies. Chiral plasmonic materials are particularly appealing due to their strong and specific interactions with light. In this work we broaden the portfolio of available strategies toward the preparation of chiral plasmonic assemblies, by applying the principles of chirality synchronization-a phenomenon known for small molecules, which results in the formation of chiral domains from transiently chiral molecules. We report the controlled cocrystallization of 23 nm gold nanoparticles and liquid crystal molecules yielding domains made of highly ordered, helical nanofibers, preferentially twisted to the right or to the left within each domain. We confirmed that such micrometer sized domains exhibit strong, far-field circular dichroism (CD) signals, even though the bulk material is racemic. We further highlight the potential of the proposed approach to realize chiral plasmonic thin films by using a mechanical chirality discrimination method. Toward this end, we developed a rapid CD imaging technique based on the use of polarized light optical microscopy (POM), which enabled probing the CD signal with micrometer-scale resolution, despite of linear dichroism and birefringence in the sample. The developed methodology allows us to extend intrinsically local effects of chiral synchronization to the macroscopic scale, thereby broadening the available tools for chirality manipulation in chiral plasmonic systems.

5.
ChemistryOpen ; 8(6): 705-711, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31205847

RESUMO

We report an efficient, seed-mediated method for the synthesis of gold nanotriangles (NTs) which can be used for controlled self-assembly. The main advantage of the proposed synthetic protocol is that it relies on using stable (over the course of several days) intermediate seeds. This stability translates into increasing time efficiency of the synthesis and makes the protocol experimentally less demanding ('fast addition' not required, tap water can be used in the final steps) as compared to previously reported procedures, without compromising the size and shape monodispersity of the product. We demonstrate high reproducibility of the protocol in the hands of different researchers and in different laboratories. Additionally, this modified seed-mediated method can be used to produce NTs with edge lengths between ca. 45 and 150 nm. Finally, the high 'quality' of NTs allows the preparation of long-range ordered assemblies with vertically oriented building blocks, which makes them promising candidates for future optoelectronic technologies.

6.
Nanomaterials (Basel) ; 9(4)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979049

RESUMO

In this study, we report a universal approach allowing the non-covalent deposition of gold nanoparticles on reduced graphene oxide surface in a controlled fashion. We used a modified Hummers method to obtain graphene oxide, which then underwent surficial functionalization with carboxyl moieties coupled with simultaneous reduction. Nanoparticles were synthesized ex-situ and capped with a thiolated poly-ethylene glycol (PEG) ligand. The interactions between the surface of modified graphene oxide and nanoparticle ligands enabled the formation of stable hybrid graphene-nanoparticles materials in the aqueous phase. Using this technique, we were able to cover the surface of graphene with gold nanoparticles of different shapes (spheres, rods, triangles, stars, and bipyramids), broad range of sizes (from 5 nm to 100 nm) and controlled grafting densities. Moreover, materials obtained with this strategy exhibited long-term stability, which coupled with the versatility and facility of preparation, makes our technique appealing in the light of increasing demand for new graphene-based hybrid nanostructures.

7.
Materials (Basel) ; 11(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200240

RESUMO

The energy transfer from photosynthetic complex photosystem I to thermally reduced graphene oxide was studied using fluorescence microscopy and spectroscopy, and compared against the structure in which monolayer epitaxial graphene was used as the energy acceptor. We find that the properties of reduced graphene oxide (rGO) as an energy acceptor is qualitatively similar to that of epitaxial graphene. Fluorescence quenching, which in addition to shortening of fluorescence decay, is a signature of energy transfer varies across rGO substrates and correlates with the transmission pattern. We conclude that the efficiency of the energy transfer depends on the number of rGO layers in the flakes and decreases with this number. Furthermore, careful analysis of fluorescence imaging data confirms that the energy transfer efficiency dependence on the excitation wavelength, also varies with the number of rGO flakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA