Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612575

RESUMO

Multifunctional delivery systems capable of modulating drug release and exerting adjunctive pharmacological activity have attracted particular attention. Chitosan (CS) and pomegranate seed oil (PO) appear to be attractive bioactive components framing the strategy of complex therapy and multifunctional drug carriers. This research is aimed at evaluating the potential of CS in combination with PO in studies on topical emulgels containing hydrocortisone as a model anti-inflammatory agent. Its particular goal was to distinguish alterations in anti-inflammatory action followed with drug dissolution or penetrative behavior between the designed formulations that differ in CS/PO weight ratio. All formulations favored hydrocortisone release with up to a two-fold increase in the drug dissolution rate within first 5 h as compared to conventional topical preparations. The clear effect of CS/PO on the emulgel biological performance was observed, and CS was found to be prerequisite for the modulation of hydrocortisone absorption and accumulation. In turn, a greater amount of PO played the predominant role in the inhibition of hyaluronidase activity and enhanced the anti-inflammatory effect of preparation E-3. Emulgels showed a negligible reduction in mouse fibroblasts' L929 cell viability, confirming their non-irritancy with skin cells. Overall, the designed formulation with a CS/PO ratio of 6:4 appeared to be the most promising topical carrier for the effective treatment of inflammatory skin diseases among the tested subjects.


Assuntos
Quitosana , Punica granatum , Animais , Camundongos , Humanos , Hidrocortisona/farmacologia , Anti-Inflamatórios/farmacologia , Óleos de Plantas/farmacologia
2.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38004400

RESUMO

Photodynamic therapy using delta-aminolevulinic acid is considered a promising option in the treatment of oral lichen planus. In the present work, three emulgel compositions prepared from natural polysaccharide gums, tragacanth, xanthan and gellan, were preliminarily tested for oromucosal delivery of delta-aminolevulinic acid. Apart from cytotoxicity studies in two gingival cell lines, the precise goal was to investigate whether the presence of the drug altered the rheological and mucoadhesive behavior of applied gelling agents and to examine how dilution with saliva fluid influenced the retention of the designed emulgels by oromucosal tissue. Ex vivo mucoadhesive studies revealed that a combination of xanthan and gellan gum enhanced carrier retention by buccal tissue even upon dilution with the saliva. In turn, the incorporation of delta-aminolevulinic acid favored interactions with mucosal tissue, particularly formulations comprised of tragacanth. The designed preparations had no significant impact on the cell viability after a 24 h incubation in the tested concentration range. Cytotoxicity studies demonstrated that tragacanth-based and gellan/xanthan-based emulgels might exert a protective effect on the metabolic activity of human gingival fibroblasts and keratinocytes. Overall, the presented data show the potential of designed emulgels as oromucosal platforms for delta-aminolevulinic acid delivery.

3.
Pharmaceutics ; 15(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896272

RESUMO

Photodynamic therapy (PDT) recently has been shown as a promising option in the treatment of premalignant lesions of the soft oral tissues. Effective delivery of photosensitizer is challenging due to poor drug adherence to the oromucosal epithelium. In the present work, emulgels composed of natural polysaccharide gums (tragacanth, xanthan and gellan) were evaluated as novel oromucosal platforms of delta-aminolevulinic acid (ALA) for PDT. Apart from mucoadhesive and textural analysis, the specific steps involved studies on drug penetration behavior and safety profile using a three-dimensional human oral epithelium model (HOE). All designed emulgels presented greater mucoadhesiveness when compared to commercial oromucosal gel. Incorporation of ALA affected textural properties of emulgels, and tragacanth/xanthan formulation with greater hardness and cohesiveness exhibited a protective function against the mechanical tongue stress. Permeability studies revealed that ALA is capable of penetrating across oromucosal epithelium by passive transport and all formulations promoted its absorption rate when compared to a commercial topical product with ALA. Importantly, the combination of tragacanth and xanthan profoundly enhanced photosensitizer retention in the buccal epithelium. Tested samples performed negligible reduction in cell viability and moderately low IL-1ß release, confirming their non-irritancy and compatibility with HOE. Overall, the presented findings indicate that tragacanth/xanthan emulgel holds promise as an oromucosal ALA-carrier for PDT strategy.

4.
Int J Biol Macromol ; 222(Pt A): 856-867, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174868

RESUMO

In the present work, a solution blow spun nanofibrous mat comprised of chitosan (CS) and poly(ethylene oxide) (PEO) was obtained as vaginal platform for tenofovir disoproxil fumarate (TDF) to prevent sexually transmitted infections. Apart from physicochemical and mechanical analysis, the specific steps involved studies on nanofibrous mat mucoadhesive and swelling characteristics upon pH fluctuations over the physiological range. Physicochemical analysis showed uniform drug distribution within the CS/PEO mat volume and pointed toward physical interactions between the drug and polymers. TDF-loaded CS/PEO nanofibrous mat was shown potentially safe when evaluated by the MTT metabolic activity and JC-1 assays in human vaginal epithelial cells VK2-E6/E7. In vitro antiviral studies indicated inhibition efficacy of TDF-CS/PEO nanofibrous mat toward HSV-2 virus and proved the SBS process does not change the microbicidal activity of drug molecule. Fluctuations in the physiological vaginal pH range of 3.8 to 5.0 substantially affected mucoadhesive and swelling behavior of chitosan which in turn impacted drug dissolution rate from polymer carrier. The rate of permeation and accumulation of TDF in vaginal tissue differed in response to vaginal pH. Faster drug permeation assessed at pH 5.0 suggests that an increase in vaginal pH could improve TDF bioavailability at earlier time points.


Assuntos
Quitosana , Nanofibras , Feminino , Humanos , Tenofovir/farmacologia , Quitosana/química , Nanofibras/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Óxido de Etileno , Fumaratos , Polímeros/química , Concentração de Íons de Hidrogênio
5.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563526

RESUMO

Chitosan (CS)/poly(ethylene oxide) (PEO)-based nanofiber mats have attracted particular attention as advanced materials for medical and pharmaceutical applications. In the scope of present studies, solution blow spinning was applied to produce nanofibers from PEO and CS and physicochemical and biopharmaceutical studies were carried out to investigate their potential as wound nanomaterial for skin healing and regeneration. Additional coating with hydrophobic poly(dimethylsiloxane) was applied to favor removal of nanofibers from the wound surface. Unmodified nanofibers displayed highly porous structure with the presence of uniform, randomly aligned nanofibers, in contrast to coated materials in which almost all the free spaces were filled in with poly(dimethylsiloxane). Infrared spectroscopy indicated that solution blow technique did not influence the molecular nature of native polymers. Obtained nanofibers exhibited sufficient wound exudate absorbency, which appears beneficial to moisturize the wound bed during the healing process. Formulations displayed greater tensile strength as compared to commercial hydrofiber-like dressing materials comprised of carboxymethylcellulose sodium or calcium alginate, which points toward their protective function against mechanical stress. Coating with hydrophobic poly(dimethylsiloxane) (applied to favor nanofiber removal from the wound surface) impacted porosity and decreased both mechanical properties and adherence to excised human skin, though the obtained values were comparable to those attained for commercial hydrofiber-like materials. In vitro cytotoxicity and irritancy studies showed biocompatibility and no skin irritant response of nanofibers in contact with a reconstituted three-dimensional human skin model, while scratch assay using human fibroblast cell line HDFa revealed the valuable potential of CS/PEO nanofibers to promote cell migration at an early stage of injury.


Assuntos
Quitosana , Nanofibras , Antibacterianos/química , Quitosana/química , Dimetilpolisiloxanos , Óxido de Etileno , Humanos , Nanofibras/química , Polietilenoglicóis/química
6.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615429

RESUMO

Topical administration of drug is an attractive alternative to the oral administration as it provides a reduction in adverse reactions and an enhancement of therapeutic effects. The use of lipid carriers in hydrogel structures makes it possible to introduce lipophilic substances in a dissolved form. In this study, an NSAID from the BCS class II, etodolac (ETD), was used. The nanostructured lipid carriers (NLC) obtained with ETD were incorporated into semi-solid forms (gels). Hydrogels with the suspended drug and oleogel were also prepared for comparison purposes. The obtained gels were tested in terms of pH, viscosity, rheological, mechanical, and bioadhesive properties. The release and permeation through membranes were also studied. All tested formulations were characterized by a pH below 7, which ensured the physiological state of the skin. The viscosities of all gels decreased with increasing shear rate, indicating non-Newtonian behavior. The fastest ETD release was observed for NLC with a Carbopol base (formulation F1); a similar result was noticed in the permeation test. The developed gel formulations containing ETD-NLC dispersion and Carbopol or Poloxamer as gelling agents were stable and possessed beneficial pharmaceutical properties.


Assuntos
Nanoestruturas , Absorção Cutânea , Etodolac , Portadores de Fármacos/química , Nanoestruturas/química , Hidrogéis , Lipídeos/química , Tamanho da Partícula
7.
Pharmaceutics ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834331

RESUMO

Polygoni cuspidati root is a resveratrol-rich source with anti-inflammatory, angiogenic and neuroprotective effects. The raw material was standardized for the content of resveratrol, for which there is a special justification for administration within the oral mucosa. To improve the solubility of resveratrol and to assure its high content in plant material, an ultrasound-assisted extraction method was applied. The addition of cyclodextrin was found to increase the extraction efficiency of resveratrol (from 13 to 297 µg per 1 g of plant material in case of 50% ethanol extracts) and enhanced its antioxidant activity as compared to pure Polygoni cuspidati extract/resveratrol. Cyclodextrin plays the role of a functional extract regarding technological properties (increasing the extraction of resveratrol from the extract, improving mucoadhesive properties). Therefore, the aim of this study was to develop mucoadhesive tablets containing combinations of the Polygoni cuspidati extract with a cyclodextrin carrier for buccal delivery. The tests sequentially included extract preparation and characterization of its physical and biological properties and then formulation studies with a broad description of the prototype properties. The test results indicate that cyclodextrin increases the efficiency of resveratrol extraction from Polygoni cuspidati rhizome, which is a rich source of resveratrol, and its extract enclosed in a mucoadhesive tablet guarantees prolonged action at the site of administration.

8.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768748

RESUMO

Scutellaria baicalensis root displays anti-inflammatory and antibacterial properties due to the presence of flavonoids, particularly baicalin, baicalein, and wogonin. Our work aimed at developing thermosensitive hydrogels containing a binary mixture of S. baicalensis radix lyophilized extract and chitosan as a novel approach for periodontal diseases treatment. Two types of chitosan were employed in preliminary studies on binary mixtures with S. baicalensis radix lyophilized extract standardized for baicalin, baicalein, and wogonin. Thermosensitive hydrogels were prepared of poloxamer 407, alginate sodium, and cellulose derivatives and evaluated in terms of rheological and mucoadhesive behavior. The presence of chitosan altered the release profile of active compounds but did not affect their in vitro permeation behavior in PAMPA assay. The synergistic effects of S. baicalensis radix lyophilized extract and chitosan toward ferrous ion-chelating activity, inhibition of hyaluronidase, and pathogen growth were observed. The thermosensitive gelling system showed shear-thinning properties, gelation temperature between 25 and 27 °C, and favorable mucoadhesiveness in contact with porcine buccal mucosa, which was enhanced in the presence of binary mixture of S. baicalensis radix extract and chitosan. The release tests showed that baicalin and baicalein were liberated in a prolonged manner with a fast onset from hydrogel formulations.


Assuntos
Quitosana/farmacologia , Doenças Periodontais/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Quitosana/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Flavonoides/farmacologia , Hidrogéis/análise , Hidrogéis/química , Hidrogéis/farmacologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Extratos Vegetais/administração & dosagem , Raízes de Plantas , Scutellaria baicalensis/metabolismo , Suínos
9.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768755

RESUMO

Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic® F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.


Assuntos
Antifúngicos/farmacologia , Géis/química , Cetoconazol/farmacologia , Poloxâmero/química , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia , Adesividade , Animais , Antifúngicos/química , Candida parapsilosis/efeitos dos fármacos , Química Farmacêutica , Liberação Controlada de Fármacos , Cetoconazol/química , Cinética , Lecitinas/química , Camundongos , Microscopia Eletrônica de Varredura , Modelos Biológicos , Modelos Teóricos , Reologia , Pele/metabolismo
10.
Drug Deliv ; 28(1): 2278-2288, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34668816

RESUMO

Chitosan glutamate (gCS) spray-dried microparticles appear promising carriers to overcome challenges associated with vaginal microbicide delivery. This study aimed at elucidating the penetration and mucoadhesive behavior of developed gCS multiunit carriers with zidovudine (ZVD) as a model antiretroviral agent in contact with excised human vaginal epithelium followed with an examination of in vitro antiherpes activity in immortal human keratinocytes HaCaT and human vaginal epithelial cells VK2-E6/E7. Both ZVD dispersion and placebo microparticles served as controls. Microparticles displayed feasible (comparable to commercial vaginal product) mucoadhesive and mucoretention characteristics to isolated human vaginal tissue. Ex vivo penetration studies revealed that gCS increased the accumulation of active agent in the vaginal epithelium but surprisingly did not facilitate its penetration across human tissue. Finally, the obtained antiviral results demonstrated the potential of gCS as an antiherpes adjunctive, whose mode of action was related to blocking viral attachment.


Assuntos
Antivirais/farmacologia , Herpes Labial/tratamento farmacológico , Nanopartículas/química , Vagina/efeitos dos fármacos , Zidovudina/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacocinética , Quitosana/química , Portadores de Fármacos/química , Feminino , Ácido Glutâmico/química , Humanos , Queratinócitos , Tecnologia Farmacêutica , Zidovudina/administração & dosagem , Zidovudina/farmacocinética
11.
Pharmaceutics ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683881

RESUMO

Buccal films are recognized as easily applicable, microbiologically stable drug dosage forms with good retentivity at the mucosa intended for the therapy of oromucosal conditions, especially infectious diseases. Multilayer films composed of layers of oppositely charged polymers separated by ionically interacting polymeric chains creating polyelectrolyte complexes represent very interesting and relatively poorly explored area. We aimed to develop the antifungal multilayer systems composed of cationic chitosan and anionic pectin as potential platforms for controlled delivery of clotrimazole. The systems were pharmaceutically characterized with regard to inter alia their release kinetics under different pH conditions, physicomechanical, or mucoadhesion properties with using an animal model of the buccal mucosa. The antifungal activity against selected Candida sp. and potential cytotoxicity with regard to human gingival fibroblasts were also evaluated. Interactions between polyions were characterized with Fourier transform infrared spectroscopy. Different clotrimazole distribution in the films layers highly affected their in vitro dissolution profile. The designed films were recognized as intelligent pH-responsive systems with strong antifungal effect and satisfactory safety profile. As addition of chitosan resulted in the improved antifungal behavior of the drug, the potential utilization of the films in resistant cases of oral candidiasis might be worth of further exploration.

12.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804630

RESUMO

The health benefits of resveratrol have been proven to inhibit the development of numerous diseases. A frequent limitation in its use is a low bioavailability stemming from a poor solubility and fast enterohepatic metabolism. Thus, the aim of the research was to investigate the possibility to formulate mucoadhesive cyclodextrin- and xanthan gum-based buccal tablets in order to increase the solubility of resveratrol and to eliminate bypass enterohepatic metabolism. Systems of resveratrol with α-cyclodextrin (α-CD), ß-cyclodextrin (ß-CD), γ-cyclodextrin (γ-CD) and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) prepared by the dry mixing method (ratio 1:1) were selected for the of tablets where xanthan gum was used as a mucoadhesive agent. They were identified on the basis of PXRD, FT-IR analysis. Tablets F1 (with α-CD), F2 (with ß-CD) and F3 (with γ-CD) were characterized by the highest compactibility as well as by favorable mucoadhesive properties. Resveratrol release from these tablets was delayed and controlled by diffusion. The tablets prepared in the course of this study appear to constitute promising resveratrol delivery systems and are recommended to increase the effectiveness of the treatment in many diseases, particularly periodontitis.

13.
Materials (Basel) ; 14(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514018

RESUMO

Etodolac (ETD), a nonsteroidal anti-inflammatory drug, exhibits antinflammatory, analgesic, and antipyretic activity. The main type of ETD administration is oral route, which is associated with significant systemic side effects. Nanostructured lipid carriers (NLC), a modern lipid formulation, are non-toxic, biocompatible, can improve the solubility and stability of drugs. Nanostructured lipid carriers (NLC) containing etodolac were prepared by a melt-emulsification and ultrasonication technique. Full factorial design (FFD) was applied to optimize the composition of NLC and their properties such as zeta potential, polidyspersity index, and entrapment efficiency. Formulations consisting of Capryol 90, glicerol monostearate, and Tween 20 displayed particle size below 300 nm, encapsulated drug with efficiency of approximately 87% and prolonged drug release up to 24 h. Stable formulations displayed moderately negative surface charge suggesting their limited ability to interact with skin surface but simultaneously presenting their lower risk to cause cell-membrane disruption. In fact, cytotoxicity assessment using human dermal fibroblasts and human epidermal keratinocytes revealed that etodolac-loaded NLC had no important impact on skin cells viability evaluated in vitro, which might evidence that NLC formulations are safe for dermal delivery. The studies developed were relatively fast and simple, requiring no specialized equipment method to prepare NLC as ETD carriers ensuring better solubility and prolonged drug release.

14.
Materials (Basel) ; 14(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375434

RESUMO

Polyelectrolyte complexes based on the electrostatic interactions between the polymers mixed are of increasing importance, therefore, the aim of this study was to develop hydrogels composed of anionic tragacanth gum and cationic chitosan with or without the addition of anionic xanthan gum as carriers for buccal drug delivery. Besides the routine quality tests evaluating the hydrogel's applicability on the buccal mucosa, different methods directed toward the assessment of the interpolymer complexation process (e.g., turbidity or zeta potential analysis, scanning electron microscopy and Fourier-transform infrared spectroscopy) were employed. The addition of xanthan gum resulted in stronger complexation of chitosan that affected the hydrogel's characteristics. The formation of a more viscous PEC hydrogel with improved mucoadhesiveness and mechanical strength points out the potential of such polymer combination in the development of buccal drug dosage forms.

15.
Pharmaceutics ; 12(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429349

RESUMO

Microparticles containing water-soluble zidovudine were prepared by spray-drying using chitosan glutamate and beta-glycerophosphate as an ion crosslinker (CF). The Box-Behnken design was applied to optimize the microparticles in terms of their drug loading and release behavior. Physicochemical studies were undertaken to support the results from dissolution tests and to evaluate the impact of the crosslinking ratio on the microparticles' characteristics. The zidovudine dissolution behavior had a complex nature which comprised two phases: an initial burst effect followed with a prolonged release stage. The initial drug release, which can be modulated by the crosslinking degree, was primarily governed by the dissolution of the drug crystals located on the microparticles' surfaces. In turn, the further dissolution stage was related to the drug diffusion from the swollen polymer matrix and was found to correlate with the drug loading. Differential Scanning Calorimetry (DSC) studies revealed the partial incorporation of a non-crystallized drug within the polymer matrix, which correlated with the amount of CF. Although CF influenced the swelling capacity of chitosan glutamate microparticles, surprisingly a higher amount of CF did not impact the time required for 80% of the drug to be released markedly. The formulation with the lowest polymer:CF ratio, 3:1, was selected as optimal, providing satisfactory drug loading and displaying a moderate burst effect within the first 30 min of the study, followed with a prolonged drug release of up to 210 min.

16.
J Clin Med ; 9(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331437

RESUMO

Chelidonium majus (also known as celandine) contains pharmacologically active compounds such as isoquinoline alkaloids (e.g., chelidonine, sanguinarine), flavonoids, saponins, carotenoids, and organic acids. Due to the presence of isoquinoline alkaloids, Chelidonii herba extracts are widely used as an antibacterial, antifungal, antiviral (including HSV-1 and HIV-1), and anti-inflammatory agent in the treatment of various diseases, while chitosan is a biocompatible and biodegradable carrier with valuable properties for mucoadhesive formulations preparation. Our work aimed to prepare mucoadhesive vaginal drug delivery systems composed of Chelidonii herba lyophilized extract and chitosan as an effective way to treat vaginitis. The pharmacological safety of usage of isoquinoline alkaloids, based on MTT test, were evaluated for the maximum doses 36.34 ± 0.29 µg/mL and 0.89 ± 1.16 µg/mL for chelidonine and sanguinarine, respectively. Dissolution rate profiles and permeability through artificial membranes for chelidonine and sanguinarine after their introduction into the chitosan system were studied. The low permeability for used save doses of isoquinoline alkaloids and results of microbiological studies allow confirmation that system Chelidonii herba lyophilized extract chitosan 80/500 1:1 (w/w) is a promising strategy for vaginal use. Ex vivo studies of mucoadhesive properties and evaluation of tableting features demonstrated that the formulation containing Chelidonii herba lyophilized extract (120.0 mg) with chitosan (80/500-100.0 mg) and polymer content (HPMC-100.0 mg, microcrystalline cellulose-50.0 mg, lactose monohydrate-30.0 mg and magnesium stearate-4.0 mg) is a vaginal dosage form with prolonging dissolution profile and high mucoadhesion properties (up to 4 h).

17.
Polymers (Basel) ; 12(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204334

RESUMO

Periodontal diseases are some of the most widespread oral afflictions, and they are labeled as chronic infections caused by the accumulation of bacteria in dental plaque that produces localized inflammation of the periodontium. The use of local drug delivery systems to treat periodontal diseases has received greater attention, because the active substance is targeted directly to the affected area, which minimizes its systemic side effects. Therefore, the purpose of the investigation was to develop and characterize different types of gel formulations-bigel, hydrogel and oleogel-as local delivery systems containing metronidazole (MET), which can be applied to the oral mucosa. The influence of the formulation type on the mechanical, rheological and mucoadhesive properties were examined. Moreover, in vitro release of metronidazole, its ex vivo permeation through buccal porcine mucosa and antimicrobial activity measured by the plate diffusion method were estimated. It was found that the gel formulations obtained were non-Newtonian systems, showing a shear-thinning behavior and thixotropic properties with good textural features such as firmness, compressibility and adhesiveness. Moreover, the preparations designed possessed beneficial mucoadhesive properties. The formulated hydrogels and bigels containing micronized MET were considered as better formulations in terms of drug release and antimicrobial activity compared to commercially available metronidazole ointment. An ex vivo permeation study with the use of porcine buccal mucosa demonstrated that the bigel formulation was characterized by higher initial permeability rate providing a fast therapeutic effect with simultaneous moderate retention in mucosal tissue to decrease the risk of local cytotoxicity.

18.
Int J Pharm ; 568: 118558, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31352046

RESUMO

In order to improve efficacy and accessibility of vaginal microbicides, development of smart polymer-based delivery carriers appears essential. In scope of this study, the potential of chitosan glutamate in technology of microbicide multiunit formulations containing zidovudine-loaded microbeads was investigated. Spray-drying optimization was supported by statistical design of experiments. As polymer properties may alter upon processing, particularly important was to examine the influence of product composition and process variables on final microbeads characteristic. Data from ATR-FTIR, Raman, and DSC analysis confirmed drug compatibility with chitosan glutamate after spray-drying. Formulations with polymer:drug ratio 5:1 (w/w) prepared from azeotropic ethanol-water mixture were found to spread easily upon dilution with simulant vaginal fluid, forming viscous, shear-thinning barrier, which could impede direct contact of virus with mucus cells. Furthermore, the presence of ethanol was found crucial to overcome stickiness phenomenon by interrupting hydrogen bonding between drug and polymer. In vitro dissolution studies displayed an initial burst effect followed with prolonged (up to 4 h) drug release stage. By modifying spray-drying temperature, alterations in microbeads' swelling capacity and drug release were observed. Cytotoxicity studies using human vaginal cell line VK2/E6E7 revealed that drug-free formulations exerted no significant impact on mucosal cells, suggesting they are safe for vaginal delivery.


Assuntos
Anti-Infecciosos/administração & dosagem , Quitosana/administração & dosagem , Portadores de Fármacos/administração & dosagem , Glutamatos/administração & dosagem , Zidovudina/administração & dosagem , Administração Intravaginal , Anti-Infecciosos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Dessecação , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Glutamatos/química , Humanos , Microesferas , Vagina , Zidovudina/química
19.
Int J Mol Sci ; 19(2)2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382085

RESUMO

Mucoadhesive gelling systems with tannic acid modified silver nanoparticles were developed for effective treatment of herpes virus infections. To increase nanoparticle residence time after local application, semi solid formulations designed from generally regarded as safe (GRAS) excipients were investigated for their rheological and mechanical properties followed with ex vivo mucoadhesive behavior to the porcine vaginal mucosa. Particular effort was made to evaluate the activity of nanoparticle-based hydrogels toward herpes simplex virus (HSV) type 1 and 2 infection in vitro in immortal human keratinocyte cell line and in vivo using murine model of HSV-2 genital infection. The effect of infectivity was determined by real time quantitative polymerase chain reaction, plaque assay, inactivation, attachment, penetration and cell-to-cell assessments. All analyzed nanoparticle-based hydrogels exhibited pseudoplastic and thixotropic properties. Viscosity and mechanical measurements of hydrogels were found to correlate with the mucoadhesive properties. The results confirmed the ability of nanoparticle-based hydrogels to affect viral attachment, impede penetration and cell-to-cell transmission, although profound differences in the activity evoked by tested preparations toward HSV-1 and HSV-2 were noted. In addition, these findings demonstrated the in vivo potential of tannic acid modified silver nanoparticle-based hydrogels for vaginal treatment of HSV-2 genital infection.


Assuntos
Antivirais/farmacologia , Herpes Simples/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Simplexvirus/efeitos dos fármacos , Taninos/farmacologia , Adesivos/química , Animais , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Prata/química , Suínos , Taninos/administração & dosagem , Taninos/uso terapêutico
20.
Acta Pol Pharm ; 74(2): 519-526, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29624257

RESUMO

Poor water solubility of clotrimazole (CLO) hinders development of the effective pharmaceutical dosage forms. Many different concepts and approaches, including lipid based formulations, have been undertaken to improve delivery of CLO. The purpose of this study was to design the composition of nanoemulsion with CLO for topical use, which could be processed by microfluidization method. Based on the solubility study and the results obtained from the pseudotemary phase diagrams, the optimal compositions of nanoemulsions with CLO were selected (Capryol 90/Tween 80 and oleic acid/Tween 80). The coarse emulsions were prepared by using high shear mixer and then processing by microfluidization technique. It was shown that formulation containing oleic acid and Tween 80, because of gelling properties, was not suitable for microfluidization. The stable nanoemulsion was obtained by mixing Capryol 90 as oil phase and Tween 80 as surfactant. The mean diameter of the droplets of nanoemulsion with CLO was 45.7 nm, polydispersity index was 0.27 and zeta potential -40.3 mV. The mean droplet size,of CLO nanoemulsion was significantly decreased with the increment of microfluidization passes (from 75.4 ± 3.2 nm to 63.2 ± 3.4 nm, and to 45.7 ± UR 2.8 nm after 5 and 10 passes.


Assuntos
Antifúngicos/química , Clotrimazol/química , Técnicas Analíticas Microfluídicas , Nanopartículas , Nanotecnologia , Tecnologia Farmacêutica/métodos , Química Farmacêutica , Composição de Medicamentos , Estabilidade de Medicamentos , Emulsões , Ácido Oleico/química , Tamanho da Partícula , Polímeros/química , Polissorbatos/química , Propilenoglicóis/química , Solubilidade , Tensoativos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA