Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930286

RESUMO

Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical properties of rainwater flowing from parking lots was carried out, considering heavy metals and organic micropollutants. High concentrations of zinc were observed in rainwater, in addition to alkanes, e.g., tetradecane, hexadecane, octadecane, 2,6,10-trimethyldodecane, 2-methyldodecane; phenolic derivatives, such as 2,6-dimethoxyphenol and 2,4-di-tertbutylphenol; and compounds such as benzothiazole. To remove the contaminants present in rainwater, adsorption using silica carriers of the MCF (Mesostructured Cellular Foams) type was performed. Three groups of modified carriers were prepared, i.e., (1) SH (thiol), (2) NH2 (amino), and (3) NH2/SH (amine and thiol functional groups). The research problem, which is addressed in the presented article, is concerned with the silica carrier influence of the functional group on the adsorption efficiency of micropollutants. The study included an evaluation of the effects of adsorption dose and time on the efficiency of the contaminant removal process, as well as an analysis of adsorption isotherms and reaction kinetics. The colour adsorption from rainwater was 94-95% for MCF-NH2 and MCF-NH2/SH. Zinc adsorbance was at a level of 90% for MCF-NH2, and for MCF-NH2/SH, 52%. Studies have shown the high efficacy (100%) of MCF-NH2 in removing organic micropollutants, especially phenolic compounds and benzothiazole. On the other hand, octadecane was the least susceptible to adsorption in each case. It was found that the highest efficiency of removal of organic micropollutants and zinc ions was obtained through the use of functionalized silica NH2.

2.
Cell Death Discov ; 10(1): 302, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914566

RESUMO

Despite the advances in the understanding of reproductive physiology, the mechanisms underlying ovarian aging are still not deciphered. Recent research found an association between impaired ATM-mediated DNA double-strand break (DSB) repair mechanisms and oocyte aging. However, direct evidence connecting ATM-mediated pathway function decline and impaired oocyte quality is lacking. The objective of this study was to determine the role of ATM-mediated DNA DSB repair in the maintenance of oocyte quality in a mouse oocyte knockdown model. Gene interference, in vitro culture, parthenogenesis coupled with genotoxicity assay approaches, as well as molecular cytogenetic analyses based upon next-generation sequencing, were used to test the hypothesis that intact ATM function is critical in the maintenance of oocyte quality. We found that ATM knockdown impaired oocyte quality, resulting in poor embryo development. ATM knockdown significantly lowered or blocked the progression of meiosis in vitro, as well as retarding and reducing embryo cleavage after parthenogenesis. After ATM knockdown, all embryos were of poor quality, and none reached the blastocyst stage. ATM knockdown was also associated with an increased aneuploidy rate compared to controls. Finally, ATM knockdown increased the sensitivity of the oocytes to a genotoxic active metabolite of cyclophosphamide, with increased formation of DNA DSBs, reduced survival, and earlier apoptotic death compared to controls. These findings suggest a key role for ATM in maintaining oocyte quality and resistance to genotoxic stress, and that the previously observed age-induced decline in oocyte ATM function may be a prime factor contributing to oocyte aging.

3.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Ann Hum Genet ; 88(1): 45-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37771269

RESUMO

Most mammalian cells have a single primary cilium that acts as a signalling hub in mediating cellular functions. However, little is known about the mechanisms that result in aberrant supernumerary primary cilia per cell. In this study, we re-analysed a previously published whole-genome siRNA-based reverse genetic screen for genes mediating ciliogenesis to identify knockdowns that permit multi-ciliation. We identified siRNA knockdowns that caused significant formation of supernumerary cilia, validated candidate hits in different cell-lines and confirmed that RACGAP1, a component of the centralspindlin complex, was the strongest candidate hit at the whole-genome level. Following loss of RACGAP1, mother centrioles were specified correctly prior to ciliogenesis and the cilia appeared normal. Live cell imaging revealed that increased cilia incidence was caused by cytokinesis failure which led to the formation of multinucleate cells with supernumerary cilia. This suggests that the signalling mechanisms for ciliogenesis are unable to identify supernumerary centrosomes and therefore allow ciliation of duplicated centrosomes as if they were in a new diploid daughter cell. These results, demonstrating that aberrant ciliogenesis is de-coupled from cell cycle regulation, have functional implications in diseases marked by centrosomal amplification.


Assuntos
Cílios , Citocinese , Proteínas Ativadoras de GTPase , Animais , Humanos , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/genética , Cílios/metabolismo , Mamíferos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
5.
Macromol Biosci ; 23(8): e2200465, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36598452

RESUMO

Horseradish peroxidase (HRP) is covalently bound in aqueous solution to polycationic α-poly(D-lysine) chains of ≈1000 repeating units length, PDL, via a bis-aryl hydrazone bond (BAH). Under the experimental conditions used, about 15 HRP molecules are bound along the PDL chain. The purified PDL-BAH-HRP conjugate is very stable when stored at micromolar HRP concentration in a pH 7.2 phosphate buffer solution at 4 °C. When a defined volume of such a conjugate solution of desired HRP concentration (i.e., HRP activity) is added to a macro- and mesoporous silica monolith with pore sizes of 20-30 µm as well as below 30 nm, quantitative and stable noncovalent conjugate immobilization is achieved. The HRP-containing monolith can be used as flow-through enzyme reactor for bioanalytical applications at neutral or slightly alkaline pH, as demonstrated for the determination of hydrogen peroxide in diluted honey. The conjugate can be detached from the monolith by simple enzyme reactor washing with an aqueous solution of pH 5.0, enabling reloading with fresh conjugate solution at pH 7.2. Compared to previously investigated polycationic dendronized polymer-enzyme conjugates with approximately the same average polymer chain length, the PDL-BAH-HRP conjugate appears to be equally suitable for HRP immobilization on silica surfaces.


Assuntos
Enzimas Imobilizadas , Dióxido de Silício , Peroxidase do Rábano Silvestre/química , Enzimas Imobilizadas/química , Polímeros , Polilisina/química
6.
ACS Omega ; 7(30): 26610-26631, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35936452

RESUMO

Although many different methods are known for the immobilization of enzymes on solid supports for use in flow-through applications as enzyme reactors, the reproducible immobilization of predetermined amounts of catalytically active enzyme molecules remains challenging. This challenge was tackled using a macro- and mesoporous silica monolith as a support and dendronized polymer-enzyme conjugates. The conjugates were first prepared in an aqueous solution by covalently linking enzyme molecules and either horseradish peroxidase (HRP) or bovine carbonic anhydrase (BCA) along the chains of a water-soluble second-generation dendronized polymer using an established procedure. The obtained conjugates are stable biohybrid structures in which the linking unit between the dendronized polymer and each enzyme molecule is a bisaryl hydrazone (BAH) bond. Quantitative and reproducible enzyme immobilization inside the monolith is possible by simply adding a defined volume of a conjugate solution of a defined enzyme concentration to a dry monolith piece of the desired size. In that way, (i) the entire volume of the conjugate solution is taken up by the monolith piece due to capillary forces and (ii) all conjugates of the added conjugate solution remain stably adsorbed (immobilized) noncovalently without detectable leakage from the monolith piece. The observed flow-through activity of the resulting enzyme reactors was directly proportional to the amount of conjugate used for the reactor preparation. With conjugate solutions consisting of defined amounts of both types of conjugates, the controlled coimmobilization of the two enzymes, namely, BCA and HRP, was shown to be possible in a simple way. Different stability tests of the enzyme reactors were carried out. Finally, the enzyme reactors were applied to the catalysis of a two-enzyme cascade reaction in two types of enzymatic flow-through reactor systems with either coimmobilized or sequentially immobilized BCA and HRP. Depending on the composition of the substrate solution that was pumped through the two types of enzyme reactor systems, the coimmobilized enzymes performed significantly better than the sequentially immobilized ones. This difference, however, is not due to a molecular proximity effect with regard to the enzymes but rather originates from the kinetic features of the cascade reaction used. Overall, the method developed for the controllable and reproducible immobilization of enzymes in the macro- and mesoporous silica monolith offers many possibilities for systematic investigations of immobilized enzymes in enzymatic flow-through reactors, potentially for any type of enzyme.

7.
Eur J Hum Genet ; 30(7): 860-864, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35217805

RESUMO

Leukodystrophies are a heterogenous group of genetic disorders, characterised by abnormal development of cerebral white matter. Pelizaeus-Merzbacher disease is caused by mutations in PLP1, encoding major myelin-resident protein required for myelin sheath assembly. We report a missense variant p.(Ala109Asp) in MAL as causative for a rare, hypomyelinating leukodystrophy similar to Pelizaeus-Merzbacher disease. MAL encodes a membrane proteolipid that directly interacts with PLP1, ensuring correct distribution during myelin assembly. In contrast to wild-type MAL, mutant MAL was retained in the endoplasmic reticulum but was released following treatment with 4-phenylbutyrate. Proximity-dependent identification of wild-type MAL interactants implicated post-Golgi vesicle-mediated protein transport and protein localisation to membranes, whereas mutant MAL interactants suggested unfolded protein responses. Our results suggest that mislocalisation of MAL affects PLP1 distribution, consistent with known pathomechanisms for hypomyelinating leukodystrophies.


Assuntos
Doenças Neurodegenerativas , Doença de Pelizaeus-Merzbacher , Humanos , Mutação , Mutação de Sentido Incorreto , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Transporte Proteico
8.
Elife ; 112022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170427

RESUMO

Primary ciliary defects cause a group of developmental conditions known as ciliopathies. Here, we provide mechanistic insight into ciliary ubiquitin processing in cells and for mouse model lacking the ciliary protein Mks1. In vivo loss of Mks1 sensitises cells to proteasomal disruption, leading to abnormal accumulation of ubiquitinated proteins. We identified UBE2E1, an E2 ubiquitin-conjugating enzyme that polyubiquitinates ß-catenin, and RNF34, an E3 ligase, as novel interactants of MKS1. UBE2E1 and MKS1 colocalised, and loss of UBE2E1 recapitulates the ciliary and Wnt signalling phenotypes observed during loss of MKS1. Levels of UBE2E1 and MKS1 are co-dependent and UBE2E1 mediates both regulatory and degradative ubiquitination of MKS1. We demonstrate that processing of phosphorylated ß-catenin occurs at the ciliary base through the functional interaction between UBE2E1 and MKS1. These observations suggest that correct ß-catenin levels are tightly regulated at the primary cilium by a ciliary-specific E2 (UBE2E1) and a regulatory substrate-adaptor (MKS1).


Assuntos
Ciliopatias/metabolismo , Proteínas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Via de Sinalização Wnt , Animais , Cílios/metabolismo , Humanos , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , beta Catenina/metabolismo
9.
Methods Mol Biol ; 2462: 17-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152377

RESUMO

SNF1-related protein kinase 2 s (SnRK2s) are major regulators of plant growth, development and responses to environmental stresses. Together with clade A protein phosphatases of type 2C (PP2C) and REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR also known as PYRABACTIN RESISTANCE1 (PYR1) or PYR1-LIKE (PYL)) soluble abscisic acid (ABA) receptors they form the core of ABA-signaling. Clade A PP2Cs play a negative role in ABA signaling, primarily by inhibiting SnRK2 activity, through direct interaction and dephosphorylation of SnRK2s. Here, we describe two methods, which can be used for monitoring inhibition of the SnRK2 activity by PP2C phosphatases. One of them is an in vitro dephosphorylation assay using SnRK2 as the substrate followed by a classical in-gel kinase-activity assay and the other is immunocomplex kinase-activity assay, which can be applied for analysis of the SnRK2 activity in plant material.


Assuntos
Proteínas de Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
10.
J Med Genet ; 59(8): 737-747, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34716235

RESUMO

BACKGROUND: Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians. METHODS: Eighty-three prescreened probands were recruited to the 100,000 Genomes Project suspected to have congenital malformations caused by ciliopathies in the following disease categories: Bardet-Biedl syndrome (n=45), Joubert syndrome (n=14) and 'Rare Multisystem Ciliopathy Disorders' (n=24). We implemented a bespoke variant filtering and analysis strategy to improve molecular diagnostic rates for these participants. RESULTS: We determined a research molecular diagnosis for n=43/83 (51.8%) probands. This is 19.3% higher than previously reported by GEL (n=27/83 (32.5%)). A high proportion of diagnoses are due to variants in non-ciliopathy disease genes (n=19/43, 44.2%) which may reflect difficulties in clinical recognition of ciliopathies. n=11/83 probands (13.3%) had at least one causative variant outside the tiers 1 and 2 variant prioritisation categories (GEL's automated triaging procedure), which would not be reviewed in standard 100,000 Genomes Project diagnostic strategies. These include four structural variants and three predicted to cause non-canonical splicing defects. Two unrelated participants have biallelic likely pathogenic variants in LRRC45, a putative novel ciliopathy disease gene. CONCLUSION: These data illustrate the power of linking large-scale genome sequence to phenotype information. They demonstrate the value of research collaborations in order to maximise interpretation of genomic data.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Císticas , Anormalidades Múltiplas/genética , Ciliopatias/diagnóstico , Ciliopatias/genética , Ciliopatias/patologia , Anormalidades do Olho/genética , Humanos , Doenças Renais Císticas/genética , Fenótipo , Medicina Estatal
11.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571829

RESUMO

SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Abscísico/metabolismo , Pressão Osmótica/fisiologia , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
13.
J Assist Reprod Genet ; 38(2): 479-492, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159276

RESUMO

PURPOSE: Gap junctions and transzonal projections play a crucial role in intercellular communication between different follicular components and are necessary for follicle development. We aimed to demonstrate gap junction protein connexin 43 (Cx43) and transzonal projections (TZPs) in viable, category 1, isolated bovine pre-antral follicles (PAFs) during short-term culture and after vitrification and warming. METHODS: This study involved four experimental groups: fresh control, 2-day culture, 4-day culture, and vitrified secondary PAFs. Isolated PAFs were vitrified using a simple and efficient cryopreservation method by means of mini cell strainers. RESULTS: Cx43 and TZPs were detected in pre-antral follicles of all stages, as well as in every experimental group. The group fresh follicles showed a higher percentage of follicles that were positive for Cx43 (91.7%) than the follicles that were vitrified (77.4%). All follicles that were cultured for 2 days were Cx43-positive (100%). Follicles cultured for 4 days (65.8%) (P = 0.002) showed the lowest percentage of follicles that were Cx43-positive. The percentages of the presence or (partial) absence of the TZP network were shown to be very heterogeneous between follicles in different treatment groups. CONCLUSIONS: These results suggest the maintenance of communication between the oocyte and the somatic companion cells after vitrification and warming. The varying percentages of the expression of the TZP network within groups suggests that it will be of interest to investigate whether this is truly due to variability in TZP integrity and follicle quality or due to methodological limitations.


Assuntos
Conexina 43/genética , Líquido Folicular/metabolismo , Oócitos/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Animais , Bovinos , Criopreservação , Feminino , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Vitrificação
14.
PLoS One ; 15(12): e0243663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301511

RESUMO

Uterus transplantation is an experimental infertility treatment for women with uterine factor infertility. During donor uterus retrieval and subsequent storage, ischemia and other stressors are likely to occur, resulting in the delayed restoration of organ function and increased graft rejection. The uterus expresses connexin-based hemichannels, the opening of which can promote ischemic cell death, as well as gap junctions that may expand cell death by bystander signaling. We investigated if connexin channel inhibition with connexin channel inhibitor Gap27 could protect the uterus against cell death during the storage period. The study involved 9 female patients undergoing gender-change surgery. Before uterus removal, it was exposed to in situ warm ischemia with or without reperfusion. Uterus biopsies were taken before, during, and after ischemia, with or without reperfusion, and were subsequently stored under cold (4ᵒC) or warm (37ᵒC) conditions. TUNEL cell death assay was done at various time points along the combined in vivo/ex vivo experimental timeline. We found that Gap27 protected against storage-related cell death under cold but not warm conditions when the uterus had experienced in situ ischemia/reperfusion. For in situ brief ischemia without reperfusion, Gap27 reduction of cell death was delayed and significantly less, suggesting that protection critically depends on processes initiated when the organ was still in the donor. Thus, the inclusion of the connexin channel inhibitor Gap27 during cold storage protects the uterus against cell death, and the degree of protection depends on the history of exposure to warm ischemia. Gap27 protection may be indicated for uteri from deceased donors, in which ischemia is likely because life-saving organs have retrieval priority.


Assuntos
Conexinas/antagonistas & inibidores , Oligopeptídeos/farmacologia , Preservação de Órgãos/métodos , Substâncias Protetoras/farmacologia , Útero/fisiologia , Adolescente , Adulto , Morte Celular/efeitos dos fármacos , Conexinas/metabolismo , Conexinas/farmacologia , Feminino , Humanos , Doadores de Tecidos , Pessoas Transgênero , Útero/citologia , Útero/efeitos dos fármacos , Útero/transplante , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-32714915

RESUMO

Biocatalysis that produces economically interesting compounds can be carried out by using free enzymes or microbial cells. However, often the cell metabolism does not allow the overproduction or secretion of activated sugars and thus downstream processing of these sugars is complicated. Here enzyme immobilization comes into focus in order to stabilize the enzyme as well as to make the overall process economically feasible. Besides a robust immobilization method, a highly active and stable enzyme is needed to efficiently produce the product of choice. Herein, we report on the identification, gene expression, biochemical characterization as well as immobilization of the uridine-5'-diphosphate-glucose (UDP-glucose) pyrophosphorylase originating from the thermostable soil actinobacterium Thermocrispum agreste DSM 44070 (TaGalU). The enzyme immobilization was performed on organically modified mesostructured cellular foams (MCF) via epoxy and amino group to provide a stable and active biocatalyst. The soluble and highly active TaGalU revealed a V max of 1698 U mg-1 (uridine-5'-triphosphate, UTP) and a K m of 0.15 mM (UTP). The optimum reaction temperature was determined to be 50°C. TaGalU was stable at this temperature for up to 30 min with a maximum loss of activity of 65%. Interestingly, immobilized TaGalU was stable at 50°C for at least 120 min without a significant loss of activity, which makes this enzyme an interesting biocatalyst for the production of UDP-glucose.

16.
Mol Hum Reprod ; 26(8): 553-566, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32514568

RESUMO

Among the investigated mechanisms of chemotherapy-induced damage to human primordial follicle reserve are induction of DNA double-strand breaks (DSBs) and resultant apoptotic death, stromal-microvascular damage and follicle activation. Accumulating basic and translational evidence suggests that acute exposure to gonadotoxic chemotherapeutics, such as cyclophosphamide or doxorubicin, induces DNA DSBs and triggers apoptotic death of primordial follicle oocytes within 12-24 h, resulting in the massive loss of ovarian reserve. Evidence also indicates that chemotherapeutic agents can cause microvascular and stromal damage, induce hypoxia and indirectly affect ovarian reserve. While it is possible that the acute reduction of the primordial follicle reserve by massive apoptotic losses may result in delayed activation of some primordial follicles, this is unlikely to be a predominant mechanism of loss in humans. Here, we review these mechanisms of chemotherapy-induced ovarian reserve depletion and the potential reasons for the discrepancies among the studies. Based on the current literature, we propose an integrated hypothesis that explains both the acute and delayed chemotherapy-induced loss of primordial follicle reserve in the human ovary.


Assuntos
Dano ao DNA/fisiologia , Folículo Ovariano/fisiologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Preservação da Fertilidade , Humanos , Folículo Ovariano/metabolismo , Reserva Ovariana/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo
17.
Theriogenology ; 141: 16-25, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494458

RESUMO

The possible impact of natural heat stress on animal fertility is currently a major concern for breeding companies. Here, we aimed to address this concern by determining the effects of natural heat stress on the fertility of Holstein bulls located in the Netherlands. Semen samples were collected from six bulls at two locations in March 2016 (low temperature-humidity index (THI) group; maximum THI of 51.8 and 55 at their respective locations) or August (high THI group; maximum THI of 77.9 and 80.5 during meiotic and spermiogenic stages of spermatogenesis, 42 to 14 days prior to semen collection). The effect of heat stress on semen quality was assessed by sperm morphology, motility, reactive oxygen species production, lipid peroxidation, viability, and DNA fragmentation. Moreover, we evaluated the development of embryos generated in vitro by low and high THI semen, and determined inner cell mass/trophectoderm ratio, apoptotic cell ratio, and embryonic gene expression in day-8 blastocysts. An increase in cell death (propidium iodide-positive cells; P = 0.039) was observed in the high THI group (31.5%) compared to the low THI group (27.6%). Moreover, a decrease (P < 0.001) was observed in the total blastocyst rates at day 7 post-insemination (15.3 vs 20.9%) and day 8 (23.2 vs 29.6%) in the high THI compared to the low THI group, respectively. There were no differences in the relative abundance of candidate transcripts examined. In conclusion, sperm samples from dairy bulls obtained during a period with higher THI had reduced viability and led to a decrease in blastocyst development and delayed hatching, compared to semen collected during a period with low THI.


Assuntos
Bovinos/fisiologia , Técnicas de Cultura Embrionária/veterinária , Fertilização in vitro/veterinária , Temperatura Alta , Umidade , Espermatogênese , Animais , Bovinos/embriologia , Sobrevivência Celular , Desenvolvimento Embrionário , Regulação da Expressão Gênica , Masculino , Motilidade dos Espermatozoides , Espermatozoides
18.
Physiol Plant ; 168(1): 38-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30714160

RESUMO

In plants, CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are involved in calcium signaling in response to endogenous and environmental stimuli. Here, we report that ZmCPK11, one of maize CDPKs, participates in salt stress response and tolerance. Salt stress induced expression and upregulated the activity of ZmCPK11 in maize roots and leaves. Activation of ZmCPK11 upon salt stress was also observed in roots and leaves of transgenic Arabidopsis plants expressing ZmCPK11. The transgenic plants showed a long-root phenotype under control conditions and a short-root phenotype under NaCl, abscisic acid (ABA) or jasmonic acid (JA) treatment. Analysis of ABA and JA content in roots indicated that ZmCPK11 can mediate root growth by regulating the levels of these phytohormones. Moreover, 4-week-old transgenic plants were more tolerant to salinity than the wild-type plants. Their leaves were less chlorotic and showed weaker symptoms of senescence accompanied by higher chlorophyll content and higher quantum efficiency of photosystem II. The expression of Na+ /K+ transporters (HKT1, SOS1 and NHX1) and transcription factors (CBF1, CBF2, CBF3, ZAT6 and ZAT10) with known links to salinity tolerance was upregulated in roots of the transgenic plants upon salt stress. Furthermore, the transgenic plants accumulated less Na+ in roots and leaves under salinity, and showed a higher K+ /Na+ ratio in leaves. These results show that the improved salt tolerance in ZmCPK11-transgenic plants could be due to an upregulation of genes involved in the maintenance of intracellular Na+ and K+ homeostasis and a protection of photosystem II against damage.


Assuntos
Arabidopsis/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Quinases/metabolismo , Tolerância ao Sal , Zea mays/enzimologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas , Plantas Geneticamente Modificadas/fisiologia , Potássio/análise , Proteínas Quinases/genética , Sódio , Simportadores de Cloreto de Sódio-Potássio , Fatores de Transcrição , Zea mays/genética
19.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652818

RESUMO

Enzymes are nature's catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.


Assuntos
Biocatálise , Técnicas de Química Sintética/métodos , Glicoconjugados/síntese química , Glicosiltransferases/metabolismo , Glicosiltransferases/química
20.
ACS Omega ; 4(4): 7795-7806, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459868

RESUMO

Horseradish peroxidase isoenzyme C (HRP) and Engyodontium album proteinase K (proK) were immobilized inside macro- and mesoporous silica monoliths. Stable immobilization was achieved through simple noncovalent adsorption of conjugates, which were prepared from a polycationic, water-soluble second generation dendronized polymer (denpol) and the enzymes. Conjugates prepared from three denpols with the same type of repeating unit (r.u.), but different average lengths were compared. It was shown that there is no obvious advantage of using denpols with very long chains. Excellent results were achieved with denpols having on average 750 or 1000 r.u. The enzyme-loaded monoliths were tested as flow reactors. Comparison was made with microscopy glass coverslips onto which the conjugates were immobilized and with glass micropipettes containing adsorbed conjugates. High enzyme loading was achieved using the monoliths. Monoliths containing immobilized denpol-HRP conjugates exhibited good operational stability at 25 °C (for at least several hours), and good storage stability at 4 °C (at least for weeks) was demonstrated. Such HRP-containing monoliths were applied as continuous flow reactors for the quantitative determination of hydrogen peroxide in aqueous solution between 1 µM (34 ng/mL) and 50 µM (1.7 µg/mL). Although many methods for immobilizing enzymes on silica surfaces exist, there are only a few approaches with porous silica materials for the development of flow reactors. The work presented is a promising contribution to this field of research toward bioanalytical and biosynthetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA