Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(8): 4143-4151, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36745383

RESUMO

Quantum dots consisting of an axial Zn0.97Mg0.03Te insertion inside a large-bandgap Zn0.9Mg0.1Te nanowire core are fabricated in a molecular-beam epitaxy system by employing the vapor-liquid-solid growth mechanism. In addition, this structure is coated with a thin ZnSe radial shell that forms a type-II interface with the dot semiconductor. The resulting radial electron-hole separation is evidenced by several distinct effects that occur in the presence of the ZnSe shell, including the optical emission redshift of about 250 meV, a significant decrease in emission intensity, an increase in the excitonic lifetime by one order of magnitude, and an increase in the biexciton binding energy. The type-II nanowire quantum dots where electrons and holes are radially separated constitute a promising platform for potential applications in the field of quantum information technology.

2.
Nano Lett ; 15(3): 1972-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25710186

RESUMO

We study the impact of the nanowire shape anisotropy on the spin splitting of excitonic photoluminescence. The experiments are performed on individual ZnMnTe/ZnMgTe core/shell nanowires as well as on ZnTe/ZnMgTe core/shell nanowires containing optically active magnetic CdMnTe insertions. When the magnetic field is oriented parallel to the nanowire axis, the spin splitting is several times larger than for the perpendicular field. We interpret this pronounced anisotropy as an effect of mixing of valence band states arising from the strain present in the core/shell geometry. This interpretation is further supported by theoretical calculations which allow to reproduce experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA