Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519733

RESUMO

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Assuntos
Aminoácidos , Excitação Neurológica , Ratos , Masculino , Animais , Aminoácidos/farmacologia , Pentilenotetrazol/farmacologia , Ácido Valproico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Excitação Neurológica/metabolismo , Aminas/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Seizure ; 115: 62-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184900

RESUMO

Despite the availability of many antiseizure medications (ASMs), 30 % of patients experience pharmacoresistant seizures. High-throughput screening methods undoubtedly remain one of the most important approaches for discovering new molecules to treat seizures. However, the costly and time-consuming nature of drug development prompts us to explore alternative strategies to counteract drug-resistant seizures. One such approach is to consider intranasal administration of known molecules for seizure treatment. In the case of treating epileptic seizures, administering ASMs intranasally may enhance treatment effectiveness and minimize adverse effects. A good example of changes in drug administration is the intranasal administration of fentanyl, which has become a clinical standard in the emergency setting to treat moderate to severe pain in adults and children. This review discusses the utilization of intranasally administered ASMs for both acute and chronic seizures. It addresses various targeted pharmacokinetic approaches, challenges and prospects associated with these regimens. Brief neuroanatomical and molecular rationale for nose-to-brain drug transport is also presented. Furthermore, recent preclinical studies validating the efficacy and brain distribution following intranasal administration of the most commonly used drugs in chronic treatment are also discussed.


Assuntos
Epilepsia , Midazolam , Criança , Adulto , Humanos , Administração Intranasal , Midazolam/farmacocinética , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Resultado do Tratamento , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Diazepam/uso terapêutico
3.
Neurol Neurochir Pol ; 57(3): 235-242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999373

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS) that mostly manifests as irreversible disability. The aetiopathogenesis of MS is still unclear, although it was initially thought to be primarily mediated by T-cells. Research into the immune concepts of MS pathophysiology in recent years has led to a shift in the understanding of its origin i.e. from a T-cell-mediated to a B-cell-mediated molecular background. Thus, the use of B-cell-selective therapies, such as anti- -CD20 antibody therapy, as expanded therapeutic options for MS is now strongly supported. This review provides an up-to-date discussion on the use of anti-CD20 targeted therapy in MS treatment. We present a rationale for its use and summarise the results of the main clinical trials showing the efficacy and safety of rituximab, ocrelizumab, ofatumumab, and ublituximab. Future directions that show selectivity to a broader population of lymphocytes, such as the use of anti-CD19 targeted antibodies, as well as the concept of extended interval dosing (EID) of anti-CD20 drugs, are also discussed in this review.


Assuntos
Antineoplásicos Imunológicos , Esclerose Múltipla , Humanos , Antígenos CD20 , Linfócitos B , Linfócitos , Rituximab/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico
4.
Neuropharmacology ; 227: 109425, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709037

RESUMO

The major obstacle in developing new treatment strategies for refractory epilepsy is the complexity and poor understanding of its mechanisms. Utilizing the model of lamotrigine-resistant seizures, we evaluated whether changes in the expression of sodium channel subunits are responsible for the diminished responsiveness to lamotrigine (LTG) and if miRNAs, may also be associated. Male rats were administered LTG (5 mg/kg) before each stimulation during kindling acquisition. Challenge stimulation following LTG exposure (30 mg/kg) was performed to confirm resistance in fully kindled rats. RT-PCR was used to measure the mRNA levels of sodium channel subunits (SCN1A, SCN2A, and SCN3A) and miRNAs (miR-155-5p, miR-30b-5p, miR-137-3p, miR-342-5p, miR-301a-3p, miR-212-3p, miR-9a-5p, and miR-133a-3p). Western blot analysis was utilized to measure Nav1.2 protein, and bioinformatics tools were used to perform target prediction and enrichment analysis for miR-9a-5p, the only affected miRNA according to the responsiveness to LTG. Amygdala kindling seizures downregulated Nav1.2, miR-137-3p, miR-342-5p, miR-155-5p, and miR-9a-5p as well as upregulated miR-212-3p. miR-9a-5p was the only molecule decreased in rats resistant to LTG. The bioinformatic assessment and disease enrichment analysis revealed that miR-9a-5p targets expressed with high confidence in the hippocampus are the most significantly associated with epilepsy. Due to the miR-9a-5p dysregulation, major pathways affected are neurotrophic processes, neurotransmission, inflammatory response, cell proliferation and apoptosis. Interaction network analysis identified LTG target SCN2A as interacting with highest number of genes regulated by miR-9-5p. Further studies are needed to propose specific genes and miRNAs responsible for diminished responsiveness to LTG. miR-9a-5p targets, like KCNA4, KCNA2, CACNB2, SCN4B, KCNC1, should receive special attention in them.


Assuntos
Anticonvulsivantes , MicroRNAs , Ratos , Masculino , Animais , Lamotrigina , Anticonvulsivantes/uso terapêutico , MicroRNAs/metabolismo , Convulsões/tratamento farmacológico , Hipocampo/metabolismo , Biologia Computacional , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canais de Cálcio Tipo L/metabolismo
5.
Epilepsy Res ; 185: 106991, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926274

RESUMO

Although neurotrophic pathways and epigenetic processes are believed to be significant contributors to epileptogenesis and epilepsy, therapies using modulators of these targets are still lacking. BDNF-TrkB-mTOR signalling and the REST/NRSF-coREST-HDAC2 system are critical pathways responsible for neurotrophic and epigenetic processes, respectively. In our study, we assessed whether these two pathways are activated in a kindling model of seizures. We assessed the protein and mRNA levels of BDNF, TrkB, mTOR, REST/NRSF, coREST and HDAC2 in the brain. The study results showed increased expression of BDNF and decreased coREST in rats subjected to electrical kindling compared to control animals. We also revealed increased expression of both mTOR and HDAC2 in the brain tissue of electrically stimulated animals. mRNA production did not follow the intensified mTOR and HDAC2 protein synthesis. Furthermore, increased expression of BDNF, mTOR and HDAC2 was observed in animals that did not fulfil the kindling criteria in comparison to fully kindled rats. In conclusion, our results suggest that during epileptogenesis, the BDNF/mTOR neurotrophic pathway is mainly activated, with TrkB playing a less important role. Furthermore, the epigenetic transcription factor REST/NRSF was not found to be critical for HDAC2 activation. The simultaneous activation of both mTOR and HDAC2 systems during epileptogenesis confirms multifactorial neuronal adaptation, including neurotrophic and epigenetic processes. Our results may indicate that similar to cancer studies, the coadministration of regulators of both system should be considered a new potential strategy for preventing epileptogenesis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Excitação Neurológica , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Excitação Neurológica/fisiologia , RNA Mensageiro/metabolismo , Ratos , Convulsões/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Neurochem Res ; 47(7): 2109-2122, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522366

RESUMO

The efficacy of a ketogenic diet (KD) in controlling seizure has been shown in many experimental and clinical studies, however, its mechanism of action still needs further clarification. The major goal of the present study was to investigate the influence of the commercially available KD and caloric restriction (CR) on the hippocampal afterdischarge (AD) threshold in rats, and concomitant biochemical changes, specifically concerning the kynurenine pathway, in plasma and the hippocampus. As expected, the rats on the KD showed higher AD threshold accompanied by increased plasma ß-hydroxybutyrate level compared to the control group and the CR rats. This group presented also lowered tryptophan and elevated kynurenic acid levels in plasma with similar changes in the hippocampus. Moreover, the KD rats showed decreased levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) in plasma and the hippocampus. No regular biochemical changes were observed in the CR group. Our results are analogous to those detected after single administrations of fatty acids and valproic acid in our previous studies, specifically to an increase in the kynurenine pathway activity and changes in peripheral and central BCAA and AAA levels. This suggests that the anticonvulsant effect of the KD may be at least partially associated with those observed biochemical alternations.


Assuntos
Dieta Cetogênica , Ácido 3-Hidroxibutírico/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Hipocampo/metabolismo , Cinurenina/metabolismo , Ratos , Convulsões/metabolismo
7.
Curr Med Chem ; 28(14): 2783-2806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32628586

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the gene that encodes a critical cell regulatory protein, huntingtin (Htt). The expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats causes improper folding of functional proteins and is an initial trigger of pathological changes in the brain. Recent research has indicated that the functional dysregulation of many transcription factors underlies the neurodegenerative processes that accompany HD. These disturbances are caused not only by the loss of wild-type Htt (WT Htt) function but also by the occurrence of abnormalities that result from the action of mutant Htt (mHtt). In this review, we aim to describe the role of transcription factors that are currently thought to be strongly associated with HD pathogenesis, namely, RE1-silencing transcription factor, also known as neuron-restrictive silencer factor (REST/NRSF), forkhead box proteins (FOXPs), peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1α), heat shock transcription factor 1 (HSF1), and nuclear factor κ light-chain-enhancer of activated B cells (NF- κB). We also take into account the role of these factors in the phenotype of HD as well as potential pharmacological interventions targeting the analyzed proteins. Furthermore, we considered whether molecular manipulation resulting in changes in transcription factor function may have clinical potency for treating HD.


Assuntos
Doença de Huntington , Regulação da Expressão Gênica , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Proteínas do Tecido Nervoso/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Pharmacol Rep ; 73(2): 506-515, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33377994

RESUMO

BACKGROUND: The aim of the study was to evaluate the brain-derived proteins, extracellular matrix-derived protein and cytokines as potential peripheral biomarkers of different susceptibility to seizure development in an animal model of epilepsy evoked by chronic focal electrical stimulation of the brain. METHODS: The plasma levels of IL-1ß (interleukin 1ß), IL-6 (interleukin 6), UCH-L1 (ubiquitin C-terminal hydrolase 1), MMP-9 (matrix metalloproteinase 9), and GFAP (glial fibrillary acidic protein) were assessed. The peripheral concentrations of the selected proteins were analyzed according to the status of kindling and seizure severity parameters. In our study, increased concentrations of plasma IL-1ß and IL-6 were observed in rats subjected to hippocampal kindling compared to sham-operated rats. RESULTS: Animals that developed tonic-clonic seizures after the last stimulation had higher plasma concentrations of IL-1ß and IL-6 than sham-operated rats and rats that did not develop seizure. Elevated levels of IL-1ß and IL-6 were observed in rats that presented more severe seizures after the last five stimulations compared to sham-operated animals. A correlation between plasma IL-1ß and IL-6 concentrations was also found. On the other hand, the plasma levels of the brain-derived proteins UCH-L1, MMP-9, and GFAP were unaffected by kindling status and seizure severity parameters. CONCLUSIONS: The plasma concentrations of IL-1ß and IL-6 may have potential utility as peripheral biomarkers of immune system activation in the course of epilepsy and translational potential for future clinical use. Surprisingly, markers of cell and nerve ending damage (GFAP, UCH-L1 and MMP-9) may have limited utility.


Assuntos
Citocinas/sangue , Epilepsia/fisiopatologia , Convulsões/fisiopatologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Epilepsia/imunologia , Proteínas da Matriz Extracelular/metabolismo , Interleucina-1beta/sangue , Interleucina-6/sangue , Excitação Neurológica , Masculino , Ratos , Ratos Wistar , Convulsões/imunologia
9.
Behav Brain Res ; 386: 112591, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32194190

RESUMO

The aim of this study was to explore the neurobiological background of individual susceptibility and resistance to the development of posttraumatic stress disorder (PTSD)-like behaviours. Rats were divided into susceptible, PTSD(+), and resistant, PTSD(-), groups based on freezing duration during exposure to aversive context and the time spent in the central area in open field test one week after threefold stress experience (modified single prolonged stress). PTSD(-) rats showed increased concentrations of corticosterone in plasma and changes in GAD67 expression: decreased in the infralimbic cortex (IL) and increased in the lateral amygdala (LA), dentate gyrus (DG), and CA1 area of the hippocampus. Moreover, in this group, we found an increase in the number of CRF-positive nuclei in the parvocellular neurons of the paraventricular hypothalamic nucleus (pPVN). The PTSD(+) group, compared to PTSD(-) rats, had decreased concentrations of corticosterone in plasma and reduced CRF expression in the pPVN, higher CRF expression in the CA1, increased expression of CRF-positive nuclei and GR receptors in the CA3 area of the hippocampus, and increased expression of GR receptors in the DG and the central amygdala (CeA). Biochemical analysis showed higher concentrations of noradrenaline, glutamic acid in the dorsal hippocampus and amygdala and lower levels of dopamine and its metabolites in the amygdala of the PTSD(+) group than in the PTSD(-) group. The study revealed different behavioural and biochemical profiles of PTSD(+) and PTSD(-) rats and suggested that individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity may determine hippocampal- and amygdala-dependent memory and fear processing.


Assuntos
Suscetibilidade a Doenças/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/fisiopatologia , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Corticosterona/análise , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Giro Denteado/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/psicologia , Medo/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Memória , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo
10.
Brain Res Bull ; 158: 108-115, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151715

RESUMO

Global transcriptional disturbances are believed to play a major role in the course of epilepsy. Due to the high complexity, the neurobiological mechanisms underlying different susceptibility to seizure and epilepsy are not well known. A transcription factor called REST/NRSF (repressor element 1-silencing transcription factor/neuron-restrictive silencer factor) is believed to contribute to processes associated with seizure development. Its downstream genes, those encoding BDNF (brain-derived neurotrophic factor) and TrkB (BDNF receptor; tropomyosin receptor kinase B), are also thought to play a role. To verify this hypothesis, we used a PTZ kindling model of epilepsy and divided animals into groups according to their different susceptibility to seizure. The concentrations of REST/NRSF, BDNF, and TrkB protein and mRNA were measured in hippocampal homogenates. The level of REST/NRSF protein measured 24 h after the last PTZ injection was increased in animals resistant to kindling and was unchanged in groups of rats kindled after 5, 10 and 20 in.ections of PTZ. In contrast, TrkB protein concentration was enhanced in all kindled rats and was unchanged in the resistant rats. There were no changes in the protein concentration of BDNF in rats with different susceptibility to kindling; however, data from the combined kindled groups vs. the resistant group revealed an increased level of BDNF in resistant animals. In sum, the increased level of protein REST/NRSF in resistant animals may reflect its neuroprotective role against seizure development. The increased concentration of TrkB protein in kindled animals indicates its pivotal role in the process of epileptogenesis. We propose that in resistant rats, REST/NRSF could contribute to the prevention of TrkB activation related to seizures.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Epilepsia/metabolismo , Pentilenotetrazol/toxicidade , Receptor trkB/biossíntese , Proteínas Repressoras/biossíntese , Convulsões/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Epilepsia/induzido quimicamente , Epilepsia/genética , Predisposição Genética para Doença/genética , Masculino , Ratos , Ratos Wistar , Receptor trkB/genética , Proteínas Repressoras/genética , Convulsões/induzido quimicamente , Convulsões/genética
11.
J Neuroimmunol ; 332: 57-63, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952062

RESUMO

In our study, we assessed the potency of the brain-derived proteins ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), matrix metalloproteinase 9 (MMP-9), glial fibrillary acidic protein (GFAP) and the immune activation indicators interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) as peripheral biomarkers of different susceptibilities to kindling in a preclinical model. We observed increased plasma UCH-L1 levels in kindled vs. control animals. Furthermore, MMP-9 and IL-1ß concentrations were the lowest in rats resistant to kindling. In summary, UCH-L1 is an indicator of neuronal loss and BBB disruption after seizure. MMP-9 and IL-1ß may indicate resistance to kindling. UCH-L1, MMP-9 and IL-1ß may have utility as peripheral biomarkers with translational potency in the clinic.


Assuntos
Química Encefálica , Proteína Glial Fibrilar Ácida/sangue , Metaloproteinase 9 da Matriz/sangue , Convulsões/sangue , Ubiquitina Tiolesterase/sangue , Animais , Biomarcadores , Convulsivantes/toxicidade , Suscetibilidade a Doenças , Interleucina-1beta/sangue , Interleucina-6/sangue , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/metabolismo , Masculino , Modelos Animais , Pentilenotetrazol/toxicidade , Ratos , Ratos Wistar , Convulsões/induzido quimicamente
12.
Psychiatr Pol ; 53(6): 1413-1428, 2019 Dec 31.
Artigo em Inglês, Polonês | MEDLINE | ID: mdl-32017826

RESUMO

The etiopathogenesis of mood disorders is not fully understood. Among different possible causes, the involvement of genetic factors is taken into account. The manifestation of clinical symptoms cannot be assigned to a single gene mutation, thus the epigenetic association in the origin of those illnesses is suggested. The epigenetic regulation of gene expression, evoked by environmental stimuli rests upon producing persistent changes in its expression. There are several epigenetic mechanisms that change the accessibility of DNA to transcriptional factors such as acetylation/deacetylation and methylation/demethylation of the histones or an introduction of methyl groups to the cytosine of the DNA. Early and adult stress exposure is believed to have an association with epigenetic alteration of genes involved in mood regulation, for example, genes involved in the regulation of the HPA axis activity (NR3C1) or responsible for the serotonergic neurotransmission (SLC6A4). The data coming from epigenetic research indicate that mechanism of action of some antidepressants such as fluoxetine and escitalopram or mood stabilizers such as valproicacid, is at least partly associated with the epigenetic processes. Moreover, the epigenetic changes in some genes are believed to be promising diagnostic tools. These changes may help to identify the groups of patients particularly vulnerable to mental disorders and may have potential utility as biomarkers facilitating diagnosis and treatment of psychiatric disorders. Taken together, the epigenetic research will reveal neurobiological underpinnings of affective disorders and may open a new pharmacological avenue for patients suffering from mood disorders and other mental disorders.


Assuntos
Depressão/genética , Epigênese Genética , Predisposição Genética para Doença , Transtornos do Humor/genética , Estresse Psicológico/genética , Metilação de DNA , Estudos de Associação Genética , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Fatores de Risco
13.
Behav Brain Res ; 359: 181-189, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366032

RESUMO

The aim of the study was to assess appetitive responses and central dopaminergic neurotransmission in passive and active rats divided according to their immobility time in the Porsolt swim test and exposed to restraint stress. Passive rats had more episodes of appetitive 50-kHz ultrasonic vocalization (USV) during rat encounter after social isolation and spent significantly more time in the amphetamine-associated context in conditioned place preference test, compared to active rats. Restraint stress decreased sucrose preference, but increased appetitive vocalization and reinforced the conditioned place preference only in passive animals that was associated with increased dopamine concentration in the amygdala. Restraint stress increased also the level of Cocaine- and Amphetamine Regulated Transcript (CART) peptide, a neuromodulator linked to dopamine neurotransmission, in the central nucleus of amygdala, while decreasing it the nucleus accumbens shell in passive rats. In the parvocellular region of paraventricular nucleus of the hypothalamus passive animals had a higher expression of CART compared to passive restraint rats and active control rats. The obtained results show that active and passive rats in the Porsolt test differ significantly in response to appetitive stimuli, which can be additionally changed under stress conditions. The underlying mechanisms are probably associated with differences in dopaminergic activity and CART signaling in reward system.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Apetitivo/fisiologia , Dopamina/metabolismo , Recompensa , Estresse Psicológico/metabolismo , Animais , Individualidade , Masculino , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Testes Psicológicos , Distribuição Aleatória , Ratos Wistar , Restrição Física/fisiologia , Restrição Física/psicologia , Natação/fisiologia , Natação/psicologia , Transmissão Sináptica/fisiologia , Ultrassom , Vocalização Animal/fisiologia
14.
Stress ; 22(1): 113-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30345859

RESUMO

This study aimed to test the hypothesis that high-anxiety (HR) rats are more sensitive to the effects of chronic corticosterone administration and antalarmin (corticotropin-releasing factor (CRF) receptor 1, CRF1 antagonist) injections than low-anxiety (LR) rats, and this effect is accompanied by changes in CRF system activity in brain regions involved in the control of emotions and the hypothalamic-pituitary-adrenal (HPA) axis. Male rats were divided into LR (n = 25) and HR (n = 30) groups according to the duration of conditioned freezing in a contextual fear test. Chronic corticosterone administration (by injection, 20 mg/kg) for 21 d (except weekends) increased freezing duration and number of GR (glucocorticoid receptor)-immunoreactive nuclei in the basal amygdala (BA) and decreased GR-immunoreactive nuclei in the infralimbic cortex (IL), dentate gyrus (DG), and CA3 area, only in the HR group. Moreover, in this group, corticosterone administration decreased number of CRF-immunoreactive neurons of the parvocellular paraventricular hypothalamic nucleus (pPVN), DG, and CA1. Antalarmin (10 mg/kg, i.p., 2 injections) significantly attenuated conditioned fear responses, increased plasma corticosterone concentration, and decreased GR-immunoreactive nuclei in the BA, only in the HR group. Moreover, in this group, antalarmin increased number of GR-immunoreactive nuclei in the IL, DG, and CA3 and increased number of CRF-immunoreactive cells in the pPVN, DG, and CA1. Hence, antalarmin attenuated the fear response and restored HPA axis function in HR rats, which were more sensitive to corticosterone exposure. These data suggest that individual differences in central local CRF system activity may determine the neurobiological mechanisms related to mood and emotional disorders.


Assuntos
Encéfalo/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Corticosterona/farmacologia , Medo/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Condicionamento Clássico/fisiologia , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Emoções , Medo/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Individualidade , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Wistar , Estresse Psicológico/metabolismo
15.
Pharmacol Rep ; 70(5): 988-992, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30107349

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative process leading to the loss of dopaminergic neurons and their projections. 1-methyl-4-phenol-1,2,5,6-tetrahydropyridine (MPTP) toxicity is a well-recognized animal model of PD. It is suggested that the impairment of mitochondrial function in the substantia nigra plays an important role in both the onset and the progression of PD. Octanoic acid (C8), a fatty acid that is the main constituent of the medium-chain triglyceride ketogenic diet, increases the metabolic activity of mitochondria; hence, it seemed interesting to investigate whether C8 exhibits neuroprotective effects in the MPTP model of PD and whether it affects mitochondria function in the striatum. METHODS: Therefore, we examined the possible protective effects of C8 in the mouse model of PD induced by MPTP. For this purpose, changes in the concentration of DA and its metabolites were determined. In addition, we investigated whether expression levels of PGC-1α and the PEPCK enzyme, markers of mitochondrial activity, are altered by C8. RESULTS: In this study, we observed for the first time that acute and, in particular, repeated administrations of C8 significantly reduced the impairment of dopaminergic neurotransmission in the striatum evoked by MPTP administration and resulted in a marked increase in PGC-1α expression and in both forms of PEPCK. CONCLUSIONS: These results indicate that the C8 leads to an inhibition of the neurodegenerative processes seen after MPTP administration. Our results suggest that a probable mechanism of the neuroprotective action of C8 is related to an increase in metabolic activity in striatal mitochondria.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Caprilatos/farmacologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Doença de Parkinson/prevenção & controle , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Ácido Homovanílico/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Fosfoenolpiruvato Carboxiquinase (GTP)/biossíntese
16.
Neurol Neurochir Pol ; 52(3): 318-325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29478670

RESUMO

The role of blood brain barrier (BBB) is to preserve a precisely regulated environment for proper neuronal signaling. In many of the central nervous system (CNS) pathologies, the function of BBB is altered. Thus, there is a necessity to evaluate a fast, noninvasive and reliable method for monitoring of BBB condition. It seems that revealing the peripheral diagnostic biomarker whose release pattern (concentration, dynamics) will be correlated with clinical symptoms of neurological disorders offers significant hope. It could help with faster diagnosis and efficient treatment monitoring. In this review we summarize the recent data concerning exploration of potential new serum biomarkers appearing in the peripheral circulation following BBB disintegration, with an emphasis on epilepsy, traumatic brain injury (TBI) and stroke. We consider the application of well-known proteins (S100ß and GFAP) as serum indicators in the light of recently obtained results. Furthermore, the utility of molecules like MMP-9, UCHL-1, neurofilaments, BDNF, and miRNA, which are newly recognized as a potential serum biomarkers, will also be discussed.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso , Biomarcadores , Humanos
17.
Pharmacol Rep ; 70(1): 14-21, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29306758

RESUMO

BACKGROUND: Changes in the expression of the GABA-A receptor subunits involved in phasic and tonic inhibition have been studied in a wide spectrum of animal models of epilepsy. However, there is no exhaustive data regarding the pentylenetetrazole (PTZ) kindling model of epilepsy. METHODS: The aim of our study was to analyse the hippocampal changes in the expression of GABA-A receptor subunits involved in phasic (α1, γ2) or tonic (α4 and δ) inhibition in rats subjected to the PTZ kindling using immunohistochemistry method as well as in animals subjected to a single injection of a subconvulsive (30mg/kg) or convulsive (55mg/kg) dose of PTZ. Moreover, the expression of GABA transporters (GAT-1 and GAT-3) was also assessed. RESULTS: In kindled animals, we observed an increase in the expression of α1 (in CA1, DG (dentate gyrus) and CA3 regions) and γ2 (CA1 and CA3) subunits as well as in the expression of GAT-1 (CA1). On the other hand, the expression of the δ subunit in the DG was reduced. The single injection of PTZ at a dose of 30mg/kg increased the expression of the α4 subunit in the DG, while at a dose of 55mg/kg, PTZ increased the expression of the α1 and α4 subunits in the DG and reduced expression of the γ2 subunit in the CA1 and CA3 regions. CONCLUSIONS: The pattern of changes observed in our study indicates that changes in tonic inhibition are involved in abnormal neuronal activity observed in PTZ model of epilepsy.


Assuntos
Hipocampo/metabolismo , Excitação Neurológica , Pentilenotetrazol , Receptores de GABA-A/metabolismo , Convulsões/metabolismo , Animais , Ondas Encefálicas , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Hipocampo/fisiopatologia , Masculino , Inibição Neural , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
18.
J Neuroimmunol ; 298: 146-52, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27609288

RESUMO

In our study, we used rapid electrical hippocampal kindling and in vivo microdialysis methods to assess the involvement of inflammatory mediators: lipopolysaccharide (LPS) and proinflammatory interleukin-1ß (IL-1ß) in mechanisms of epileptogenesis. We observed, that both, LPS and IL-1ß, administered into stimulated hippocampus, accelerated kindling process. LPS also increased the expression of IL-1ß in stimulated hippocampus in kindled rats. In vivo acute LPS perfusion, via a microdialysis cannula implanted into the naïve rat's hippocampus, produced an increase in extracellular glutamate release. We suppose, that particularly IL-1ß action and increased glutamate concentration may significantly contribute to LPS effects on kindling development.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Excitação Neurológica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Convulsões/induzido quimicamente , Análise de Variância , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Eletroencefalografia , Ensaio de Imunoadsorção Enzimática , Hipocampo/metabolismo , Interleucina-1beta/farmacologia , Masculino , Microdiálise , Ratos , Ratos Wistar , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
19.
Behav Brain Res ; 312: 174-85, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288591

RESUMO

A number of studies have identified the importance of dopaminergic, opioid, serotonergic, noradrenergic and glutamatergic neurotransmission in amphetamine-induced "50-kHz" ultrasonic vocalizations (USVs). Amphetamine became a topic of interest for many researchers interested in USVs due to its ability to induce 50-kHz USVs. To date, it has been difficult to identify the neurotransmitters responsible for this phenomenon. The aim of this study was to determine the following: (i) concentrations of neurotransmitters in selected structures of the rat brain after re-exposure of the rats to amphetamine administration; (ii) changes in Arc in the medial prefrontal cortex, striatum, nucleus accumbens core and shell, hippocampus, amygdala and ventral tegmental area; and (iii) a biological basis for differences in 50-kHz USV emissions in response to amphetamine administration. Re-exposure to amphetamine increased 50-kHz USVs. This parameter do not correlate with distance covered by the investigated animals. An increased concentration of noradrenaline in the nucleus accumbens (NAcc) strongly correlated with the number of 50-kHz USVs. We found that NAcc noradrenaline concentrations negatively correlated with the concentration of dopamine and dopamine metabolites and positively correlated with the concentration of GABA and 5-HIAA (serotonin metabolite) in this structure. We have also identified a positive correlation between striatal 3-MT (dopamine metabolite) concentrations and Arc expression in the hippocampal DG as well as a negative correlation between the concentration of GABA in the amygdala and Arc expression in the central amygdala. Thus, the relationship between the emission of 50-kHz USVs and the neurochemical changes that occur after re-exposure to amphetamine indicates cross-talk between NA, DA, 5-HT and GABA neurotransmission in the NAcc.


Assuntos
Aminoácidos/metabolismo , Anfetamina/administração & dosagem , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Proteínas do Citoesqueleto/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Alanina , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/análogos & derivados , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Ácido Homovanílico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Norepinefrina , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Taurina/metabolismo , Ondas Ultrassônicas , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
Psychopharmacology (Berl) ; 232(11): 1941-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25466704

RESUMO

RATIONALE: Acute administration of high doses of morphine reduced 50-kHz ultrasonic vocalizations (USVs). Although morphine meets the classical criteria for inducing 50-kHz USVs (it causes place preference and induces dopamine release in nucleus accumbens), it also inhibits appetitive vocalizations. OBJECTIVE: The aims of this study were to (i) study the pharmacological impact of κ-opioid (KOR) and µ-opioid receptor (MOR) ligands on the emission of 50-kHz USVs triggered by social interaction after long-term isolation and (ii) analyze the concentrations of the main neurotransmitters in reward-related structures (ventral tegmental area (VTA), nucleus accumbens (NAcc), and medial prefrontal cortex (mPFC)). METHODS: In an attempt to define the effects of opioid-receptor activation on the reward system, we used a social interaction test (after 21 days isolation). HPLC analysis was used to determine the monoamine and amino acid concentrations in reward-related structures. RESULTS: U-50488 (10.0 mg/kg), morphine (5.0 and 1.0 mg/kg), and naltrexone (5.0 mg/kg) decreased, and nor-BNI (10.0 mg/kg) increased 50-kHz USVs. Acute pretreatment with nor-BNI or naltrexone reduced the 50-kHz suppression induced via morphine. The biochemical data showed several variations between groups regarding dopamine concentrations, serotonin, and their metabolites; these data may suggest that the levels of emitted ultrasound in the 50-kHz band are inversely proportional to the 5-hydroxyindoleacetic acid (5-HIAA)/3-methoxytyramine (3-MT) ratio in the VTA. CONCLUSIONS: These results indicate an important role for KOR in the regulation of 50-kHz USV emissions and suggest that KOR activation may be a key mediator in the regulation of reward responses. Changes in the balance between serotonin and dopamine concentrations in the VTA may be a key predictor for 50-kHz USV emission.


Assuntos
Comportamento Apetitivo/efeitos dos fármacos , Comportamento Apetitivo/fisiologia , Morfina/farmacologia , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/fisiologia , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia , Animais , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Recompensa , Ultrassom , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA