Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10951-10960, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526375

RESUMO

Continuous efforts are ongoing to discover new luminescent materials with appropriate properties for applications in medicine, serving as theranostic agents for healing and bioimaging. In this paper, novel single-phase carbonated calcium chlorapatite (Ca10(PO4)5(CO3)Cl2, abbreviated as CaClAp-CO3) phosphors activated with varying concentrations of Sm3+ ions were successfully fabricated using both co-precipitation and hydrothermal methods to investigate the influence of the synthesis techniques on the physicochemical properties of these materials. The effects of doping concentration of Sm3+ ions and synthesis techniques on the structure, photoluminescence (PL), energy transfer, substitute sites, fluorescence lifetime and luminescence colour of phosphors were investigated. The synthesized phosphors were characterized by X-ray diffraction (XRD) to confirm their crystal phase structure and purity. Vibrational features and the incorporation of carbonate ions were verified using Fourier-transform infrared (FTIR) spectroscopy. The obtained materials emit reddish-orange light, primarily from the most intense 4G5/2 → 6H7/2 transition. The electric dipole to magnetic dipole transition ratio (ED/MD), CIE colour coordinates and colour purity were determined to provide additional insights into the spectroscopic attributes of the obtained phosphors. In addition, the concentration quenching was also observed, and its mechanism was proposed based on theoretical calculations showing the multipolar interactions.

2.
Materials (Basel) ; 14(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34947381

RESUMO

Graphene has been one of the most tested materials since its discovery in 2004. It is known for its special properties, such as electrical conductivity, elasticity and flexibility, antimicrobial effect, and high biocompatibility with many mammal cells. In medicine, the antibacterial, antiviral, and antitumor properties of graphene have been tested as intensively as its drug carrying ability. In this study, the protective effect of graphene oxide against Rubella virus infection of human lung epithelial carcinoma cells and human chondrocyte cells was examined. Cells were incubated with graphene oxide alone and in combination with the Rubella virus. The cytopathic effect in two incubation time periods was measured using DAPI dye as a percentage value of the changed cells. It was shown that the graphene oxide alone has no cytopathic effect on any of tested cell lines, while the Rubella virus alone is highly cytopathic to the cells. However, in combination with the graphene oxide percentage of the changed cells, its cytotopathicity is significantly lower. Moreover, it can be concluded that graphene oxide has protective properties against the Rubella virus infection to cells, lowering its cytopathic changes to the human cells.

3.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670306

RESUMO

The hydroxyapatite nanopowders of the Eu3+-doped, Cu2+-doped, and Eu3+/Cu2+-co-doped Ca10(PO4)6(OH)2 were prepared by a microwave-assisted hydrothermal method. The structural and morphological properties of the products were investigated by X-ray powder diffraction (XRD), transmission electron microscopy techniques (TEM), and infrared spectroscopy (FT-IR). The average crystal size and the unit cell parameters were calculated by a Rietveld refinement tool. The absorption, emission excitation, emission, and luminescence decay time were recorded and studied in detail. The 5D0 → 7F2 transition is the most intense transition. The Eu3+ ions occupied two independent crystallographic sites in these materials exhibited in emission spectra: one Ca(1) site with C3 symmetry and one Ca(2) sites with Cs symmetry. The Eu3+ emission is strongly quenched by Cu2+ ions, and the luminescence decay time is much shorter in the case of Eu3+/Cu2+ co-doped materials than in Eu3+-doped materials. The luminescence quenching mechanism as well as the schematic energy level diagram showing the Eu3+ emission quenching mechanism using Cu2+ ions are proposed. The electron paramagnetic resonance (EPR) technique revealed the existence of at least two different coordination environments for copper(II) ion.

4.
Materials (Basel) ; 13(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050186

RESUMO

Eu3+-doped Sr10(PO4)6(OH)2-Sr3(PO4)2 (SrHAp-TSP) composites were obtained via the microwave-stimulated hydrothermal method and post-heat-treated from 750 to 950 °C. Concentration of the Eu3+ ions was set to be 0.5, 1, 2, 3, 5 mol% in a ratio of the strontium ions molar content. The structural and morphological properties were investigated by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR) techniques. The average particle size of the studied materials annealed at 750, 850 and 950 °C were counted about 100, 131 and 173 nm, respectively. The luminescence properties depending on the dopant ion concentration, heat-treatment temperature, excitation wavelength and temperature were investigated. In the emission spectra, a broad peak corresponding to the 4f65d1 → 4f7 (8S7/2) emission of Eu2+ ions as well as narrow 4f-4f transitions typical for Eu3+ ions can be observed. The luminescence intensity of the 1 mol% Eu3+:Sr10(PO4)6(OH)2-Sr3(PO4)2 was measured depending on the ambient temperature in the range of 80-550 K. The CIE 1931 (International Commission on Illumination) chromaticity diagram was determined from emission spectra measured in 80, 300 and 550 K. The reduction mechanism of the Eu3+ to the Eu2+ was explained by the charge compensation mechanism based on the Kröger-Vink-notation. The decay times were measured and the Judd-Ofelt (J-O) theory was applied to analyze the observed structural and spectroscopic features.

5.
J Inorg Biochem ; 203: 110884, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31683129

RESUMO

The Eu3+ and Sr2+ ions co-doped hydroxyapatite nanopowders (Ca10(PO4)6(OH)2) were synthesized via a precipitation method and post heat-treated at 500 °C. The concentration of Eu3+ ions was established in the range of 0.5-5 mol% to investigate the site occupancy preference. The concentration of Sr2+ ions was set at 5 mol%. The structural and morphological properties of the obtained materials were studied by an X-ray powder diffraction, a transmission electron microscopy techniques and infrared spectroscopy. As synthesized nanoparticles were in the range of 11-17 nm and annealed particles were in the range of 20-26 nm. The luminescence properties in dependence of the dopant concentration and applied temperature were investigated. The 5D0 → 7F0 transition shown the abnormally strong intensity for annealed materials connected with the increase of covalency character of Eu3+-O2- bond, which arise as an effect of charge compensation mechanism. The Eu3+ ions occupied three possible crystallographic sites in these materials revealed in emission spectra: one Ca(1) site with C3 symmetry and two Ca(2) sites with Cs symmetry arranged as cis and trans symmetry. The antibacterial properties of Eu3+ and Sr2+ ions doped and co-doped hydroxyapatite nanopowders were also determined against Gram-negative pathogens such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. Obtained results suggest that both europium and strontium ions may implement antibacterial properties for hydroxyapatites. In the most cases, better antibacterial effect we noticed for dopants at 5 mol% ratio. However, the effect is strongly species- and strain-dependent feature.


Assuntos
Antibacterianos/farmacologia , Európio/química , Hidroxiapatitas/farmacologia , Nanopartículas/química , Estrôncio/química , Antibacterianos/síntese química , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hidroxiapatitas/síntese química , Klebsiella pneumoniae/efeitos dos fármacos , Luminescência , Testes de Sensibilidade Microbiana
6.
Nanomaterials (Basel) ; 9(8)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405106

RESUMO

In response to the need for new materials for theranostics application, the structural and spectroscopic properties of composites designed for medical applications, received in the melt mixing process, were evaluated. A composite based on medical grade poly(L-lactide) (PLLA) and calcium hydroxyapatite (HAp) doped with Eu3+ ions was obtained by using a twin screw extruder. Pure calcium Hap, as well as the one doped with Eu3+ ions, was prepared using the precipitation method and then used as a filler. XRPD (X-ray Powder Diffraction) and IR (Infrared) spectroscopy were applied to investigate the structural properties of the obtained materials. DSC (Differential Scanning Calorimetry) was used to assess the Eu3+ ion content on phase transitions in PLLA. The tensile properties were also investigated. The excitation, emission spectra as well as decay time were measured to determine the spectroscopic properties. The simplified Judd-Ofelt (J-O) theory was applied and a detailed analysis in connection with the observed structural and spectroscopic measurements was made and described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA