Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273128

RESUMO

The endogenous stress metabolite ß-aminobutyric acid (BABA) primes plants for enhanced resistance against abiotic and biotic stress by activating a complex phytohormone signaling network that includes abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). In this study, through stringent filtering, we identify 14 master regulatory transcription factors (TFs) from the DOF, AHL, and ERF families that potentially regulate the biosynthesis and signaling of these phytohormones. Transcriptional analysis of BABA-treated Arabidopsis thaliana and Hordeum vulgare suggests that DOF family TFs play a crucial role in stress response regulation in both species. BABA treatment in A. thaliana upregulates the TFs MNB1A and PBF and enhances the expression of the genes ICS1, EDS5, and WIN3 in the SA biosynthesis pathway, potentially boosting NPR1 and PR1 in the SA signaling pathway. Conversely, in H. vulgare, the BABA-induced upregulation of TF DOF5.8 may negatively regulate SA biosynthesis by downregulating ICS1, EDS5, and PR1. Additionally, in A. thaliana, BABA triggers the expression of TF PBF, which may result in the decreased expression of MYC2, a key gene in JA signaling. In contrast, H. vulgare exhibits increased expression of ERF2 TF, which could positively regulate the JA biosynthesis genes LOX and Tify9, along with the COI1 and JAZ genes involved in the JA signaling pathway. These findings offer new perspectives on the transcriptional regulation of phytohormones during plant priming.


Assuntos
Aminobutiratos , Arabidopsis , Regulação da Expressão Gênica de Plantas , Hordeum , Reguladores de Crescimento de Plantas , Transdução de Sinais , Fatores de Transcrição , Hordeum/genética , Hordeum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Reguladores de Crescimento de Plantas/metabolismo , Aminobutiratos/farmacologia , Ciclopentanos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
2.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34832860

RESUMO

White adipocytes contribute to energy storage, accumulating lipid droplets, whereas brown and beige adipocytes mainly function in dissipating energy as heat primarily via the action of uncoupling protein 1 (UCP1). Bone morphogenic protein 7 (BMP7) was shown to drive brown adipocyte differentiation in murine interscapular adipose tissue. Here, we performed global RNA-sequencing and functional assays on adipocytes obtained from subcutaneous (SC) and deep-neck (DN) depots of human neck and differentiated with or without BMP7. We found that BMP7 did not influence differentiation but upregulated browning markers, including UCP1 mRNA and protein in SC and DN derived adipocytes. BMP7 also enhanced mitochondrial DNA content, levels of oxidative phosphorylation complex subunits, along with PGC1α and p-CREB upregulation, and fragmentation of mitochondria. Furthermore, both UCP1-dependent proton leak and UCP1-independent, creatine-driven substrate cycle coupled thermogenesis were augmented upon BMP7 addition. The gene expression analysis also shed light on the possible role of genes unrelated to thermogenesis thus far, including ACAN, CRYAB, and ID1, which were among the highest upregulated ones by BMP7 treatment in both types of adipocytes. Together, our study shows that BMP7 strongly upregulates thermogenesis in human neck area derived adipocytes, along with genes, which might have a supporting role in energy expenditure.

3.
Front Cell Dev Biol ; 9: 737872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708041

RESUMO

Thermogenic brown and beige adipocytes might open up new strategies in combating obesity. Recent studies in rodents and humans have indicated that these adipocytes release cytokines, termed "batokines". Irisin was discovered as a polypeptide regulator of beige adipocytes released by myocytes, primarily during exercise. We performed global RNA sequencing on adipocytes derived from human subcutaneous and deep-neck precursors, which were differentiated in the presence or absence of irisin. Irisin did not exert an effect on the expression of characteristic thermogenic genes, while upregulated genes belonging to various cytokine signaling pathways. Out of the several upregulated cytokines, CXCL1, the highest upregulated, was released throughout the entire differentiation period, and predominantly by differentiated adipocytes. Deep-neck area tissue biopsies also showed a significant release of CXCL1 during 24 h irisin treatment. Gene expression data indicated upregulation of the NFκB pathway upon irisin treatment, which was validated by an increase of p50 and decrease of IκBα protein level, respectively. Continuous blocking of the NFκB pathway, using a cell permeable inhibitor of NFκB nuclear translocation, significantly reduced CXCL1 release. The released CXCL1 exerted a positive effect on the adhesion of endothelial cells. Together, our findings demonstrate that irisin stimulates the release of a novel adipokine, CXCL1, via upregulation of NFκB pathway in neck area derived adipocytes, which might play an important role in improving tissue vascularization.

4.
FEBS Lett ; 595(16): 2085-2098, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197627

RESUMO

Brown and beige adipocytes dissipate energy by uncoupling protein 1 (UCP1)-dependent and UCP1-independent thermogenesis, which may be utilized to develop treatments against obesity. We have found that mRNA and protein expression of the alanine/serine/cysteine transporter-1 (ASC-1) was induced during adipocyte differentiation of human brown-prone deep neck and beige-competent subcutaneous neck progenitors, and SGBS preadipocytes. cAMP stimulation of differentiated adipocytes led to elevated uptake of serine, cysteine, and glycine, in parallel with increased oxygen consumption, augmented UCP1-dependent proton leak, increased creatine-driven substrate cycle-coupled respiration, and upregulation of thermogenesis marker genes and several respiratory complex subunits; these outcomes were impeded in the presence of the specific ASC-1 inhibitor, BMS-466442. Our data suggest that ASC-1-dependent consumption of serine, cysteine, and glycine is required for efficient thermogenic stimulation of human adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adrenérgicos/farmacologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Termogênese , Transporte Biológico/efeitos dos fármacos , Humanos , Termogênese/efeitos dos fármacos
5.
Cells ; 9(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316277

RESUMO

Brown adipocytes, abundant in deep-neck (DN) area in humans, are thermogenic with anti-obesity potential. FTO pro-obesity rs1421085 T-to-C single-nucleotide polymorphism (SNP) shifts differentiation program towards white adipocytes in subcutaneous fat. Human adipose-derived stromal cells were obtained from subcutaneous neck (SC) and DN fat of nine donors, of which 3-3 carried risk-free (T/T), heterozygous or obesity-risk (C/C) FTO genotypes. They were differentiated to white and brown (long-term Peroxisome proliferator-activated receptor gamma (PPARγ) stimulation) adipocytes; then, global RNA sequencing was performed and differentially expressed genes (DEGs) were compared. DN and SC progenitors had similar adipocyte differentiation potential but differed in DEGs. DN adipocytes displayed higher browning features according to ProFAT or BATLAS scores and characteristic DEG patterns revealing associated pathways which were highly expressed (thermogenesis, interferon, cytokine, and retinoic acid, with UCP1 and BMP4 as prominent network stabilizers) or downregulated (particularly extracellular matrix remodeling) compared to SC ones. Part of DEGs in either DN or SC browning was PPARγ-dependent. Presence of the FTO obesity-risk allele suppressed the expression of mitochondrial and thermogenesis genes with a striking resemblance between affected pathways and those appearing in ProFAT and BATLAS, underlining the importance of metabolic and mitochondrial pathways in thermogenesis. Among overlapping regulatory influences that determine browning and thermogenic potential of neck adipocytes, FTO genetic background has a thus far not recognized prominence.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Regulação da Expressão Gênica/genética , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Perfilação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Consumo de Oxigênio , PPAR gama/genética , PPAR gama/metabolismo , Polimorfismo de Nucleotídeo Único , RNA-Seq , Transdução de Sinais/genética , Termogênese/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA