Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
ACS Infect Dis ; 10(4): 1232-1249, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511828

RESUMO

Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed. Here, we describe the interaction of the atypically C5α-methyl-substituted carbapenem, NA-1-157, with the GES-5 carbapenemase. MICs of this compound against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii producing the enzyme were reduced 4-16-fold when compared to MICs of the commercial carbapenems, reaching clinically sensitive breakpoints. When NA-1-157 was combined with meropenem, a strong synergistic effect was observed. Kinetic and ESI-LC/MS studies demonstrated that NA-1-157 is a potent inhibitor of GES-5, with a high inactivation efficiency of (2.9 ± 0.9) × 105 M-1 s-1. Acylation of GES-5 by NA-1-157 was biphasic, with the fast phase completing within seconds, and the slow phase taking several hours and likely proceeding through a reversible tetrahedral intermediate. Deacylation was extremely slow (k3 = (2.4 ± 0.3) × 10-7 s-1), resulting in a residence time of 48 ± 6 days. MD simulation of the GES-5-meropenem and GES-5-NA-1-157 acyl-enzyme complexes revealed that the C5α-methyl group in NA-1-157 sterically restricts rotation of the 6α-hydroxyethyl group preventing ingress of the deacylating water into the vicinity of the scissile bond of the acyl-enzyme intermediate. These data demonstrate that NA-1-157 is a potent irreversible inhibitor of the GES-5 carbapenemase.


Assuntos
Carbapenêmicos , beta-Lactamases , Carbapenêmicos/farmacologia , Carbapenêmicos/química , Meropeném/farmacologia , beta-Lactamases/química , Proteínas de Bactérias/química
2.
Front Immunol ; 14: 1169560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465676

RESUMO

Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.


Assuntos
Inflamação , Macrófagos , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Alarminas/metabolismo
3.
Biomedicines ; 11(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37371616

RESUMO

Immune responses are highly complex and intricately regulated processes involving immune and non-immune cells in close direct and indirect contact with each other. These cells are highly sensitive to environmental signals, including factors derived from microbiota. Here, we demonstrate that the human microbiota member Lactobacillus casei (L. casei)-derived cell-free supernatant (CFS) enhances the sensitivity of mesenchymal-stromal-cell-like (MSCI) cells to viral stimuli and induces the development of dendritic cells (DCs) with anti-inflammatory and antiviral properties via pretreated MSCl cells. Our results showed that the production of INFß and CXCL10 by MSCl cells upon viral stimulation was dependent on the presence of L. casei-derived extracellular vesicles in CFS during pretreatment. Moreover, L. casei CFS and/or poly (I:C)-conditioned MSCI cells altered the differentiation process of freshly isolated monocytes, as well as the developing DCs' phenotype and functional activities, such as cytokine and chemokine secretion. Taken together, L. casei CFS contains factors which contribute to the pronounced antiviral response of MSCI cells, avoiding the development of inflammation via the induction of differentiation of anti-inflammatory DCs that retain their antiviral properties.

4.
ACS Infect Dis ; 9(5): 1123-1136, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37130087

RESUMO

The wide spread of carbapenem-hydrolyzing ß-lactamases in Gram-negative bacteria has diminished the utility of the last-resort carbapenem antibiotics, significantly narrowing the available therapeutic options. In the Enterobacteriaceae family, which includes many important clinical pathogens such as Klebsiella pneumoniae and Escherichia coli, production of class D ß-lactamases from the OXA-48-type family constitutes the major mechanism of resistance to carbapenems. To address the public health threat posed by these enzymes, novel, effective therapeutics are urgently needed. Here, we report evaluation of a novel, C5α-methyl-substituted carbapenem, NA-1-157, and show that its MICs against bacteria producing OXA-48-type enzymes were reduced by 4- to 32-fold when compared to meropenem. When combined with commercial carbapenems, the potency of NA-1-157 was further enhanced, resulting in target potentiation concentrations ranging from 0.125 to 2 µg/mL. Kinetic studies demonstrated that the compound is poorly hydrolyzed by OXA-48, with a catalytic efficiency 30- to 50-fold lower than those of imipenem and meropenem. Acylation of OXA-48 by NA-1-157 was severely impaired, with a rate 10,000- to 36,000-fold slower when compared to the commercial carbapenems. Docking, molecular dynamics, and structural studies demonstrated that the presence of the C5α-methyl group in NA-1-157 creates steric clashes within the active site, leading to differences in the position and the hydrogen-bonding pattern of the compound, which are incompatible with efficient acylation. This study demonstrates that NA-1-157 is a promising novel carbapenem for treatment of infections caused by OXA-48-producing bacterial pathogens.


Assuntos
Antibacterianos , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Antibacterianos/farmacologia , Klebsiella/metabolismo , Cinética , beta-Lactamases/metabolismo , Escherichia coli/metabolismo
5.
Cancer Chemother Pharmacol ; 91(1): 53-66, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451019

RESUMO

Macrophages and dendritic cells (DCs) are important contributors to anti-tumor immune responses. However, these highly plastic cells are also the primary targets of tumor manipulation, which may result in the development of tumor-promoting subtypes. The effect of chemotherapeutic agents on tumor cells is an area of intense study, but little is known about their effects on innate immune cells.We investigated the effects of four chemotherapeutic drugs (two platinum-based agents; oxaliplatin and cisplatin, and two anthracyclines; doxorubicin and epirubicin) on the differentiation, function, and viability of macrophages and DCs. Macrophages and DCs were differentiated from monocytes in the presence of these chemotherapeutic drugs and we compared their cell surface receptor expression, cytokine production, and chemotactic- and T-cell-polarizing ability.We have shown that differentiation in the presence of anthracyclines dose-dependently increases CTLA-4 expression in DCs. Antineoplastic agent-driven differentiation strongly modified the CCL2- or CCL5-induced chemotactic activity of both macrophages and DCs. DCs differentiated in the presence of high-dose cisplatin and a low dose of epirubicin promoted regulatory T-cell development, whereas oxaliplatin at specific doses induced both DCs and macrophages to enhance cytotoxic T-cell responses. Furthermore, we found that inflammatory macrophages are more sensitive to doxorubicin-induced cell death than their counterparts.In summary, our results confirm that chemotherapeutic agents acting on a similar basis may have different effects on the anti-tumor immune response. Treatment with optimal dose, combinations, and timing of chemotherapy may determine tumor immunity and the metastatic potential of tumors.


Assuntos
Antineoplásicos , Monócitos , Humanos , Monócitos/metabolismo , Cisplatino/farmacologia , Oxaliplatina/farmacologia , Oxaliplatina/metabolismo , Epirubicina , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Doxorrubicina/farmacologia , Diferenciação Celular , Antibióticos Antineoplásicos/farmacologia , Imunidade , Células Cultivadas , Células Dendríticas
6.
PLoS One ; 17(10): e0274056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194602

RESUMO

Developing dendritic cells (DCs) from monocytes is a sensitively regulated process. One possible way for cancers to avoid immune recognition and antitumor response is the modulation of DC differentiation. Although several studies are available on the examination of tumor-associated macrophages, a comprehensive analysis focusing on the effects of tumor-formed DCs is not known to date. We provide a comparative analysis of the tumor-edited-monocyte derived DCs differentiated in the presence of adenocarcinomas (MDA, HT29, HeLa)- and primary (WM278, WM983A) or metastatic (WM1617, WM983B) melanomas. The immunomodulatory effect of tumors is mediated at least partly by secreted mediators. We investigated the impact of tumor cell-derived conditioned media on the differentiation of DCs from CD14+ monocytes, sequentially determining the phenotype, cytokine production, phagocytic, and the T cell polarizing capacity of moDCs. We completed our observations by analyzing our data with bioinformatic tools to provide objective correlations between phenotypical and functional properties of different tumor-educated moDCs. The correlation analysis revealed significant differences in the characteristics of adenocarcinomas- or melanomas-edited moDCs. We highlight the functional differences in the properties of moDCs differentiated in the presence of various cancer cell lines. We offer new information and options for the in vitro differentiation protocols of various tumor-conditioned moDCs. Our results confirm that various immunomodulatory properties of different tumor cell lines result in multiple manipulations of DC differentiation.


Assuntos
Adenocarcinoma , Melanoma , Adenocarcinoma/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Células Dendríticas , Humanos , Melanoma/metabolismo , Monócitos/metabolismo
7.
ACS Infect Dis ; 8(9): 1948-1961, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35973205

RESUMO

l,d-Transpeptidases (LDTs) are enzymes that catalyze reactions essential for biogenesis of the bacterial cell wall, including formation of 3-3 cross-linked peptidoglycan. Unlike the historically well-known bacterial transpeptidases, the penicillin-binding proteins (PBPs), LDTs are resistant to inhibition by the majority of ß-lactam antibiotics, with the exception of carbapenems and penems, allowing bacteria to survive in the presence of these drugs. Here we report characterization of LdtAb from the clinically important pathogen, Acinetobacter baumannii. We show that A. baumannii survives inactivation of LdtAb alone or in combination with PBP1b or PBP2, while simultaneous inactivation of LdtAb and PBP1a is lethal. Minimal inhibitory concentrations (MICs) of all 13 ß-lactam antibiotics tested decreased 2- to 8-fold for the LdtAb deletion mutant, while further decreases were seen for both double mutants, with the largest, synergistic effect observed for the LdtAb + PBP2 deletion mutant. Mass spectrometry experiments showed that LdtAb forms complexes in vitro only with carbapenems. However, the acylation rate of these antibiotics is very slow, with the reaction taking longer than four hours to complete. Our X-ray crystallographic studies revealed that LdtAb has a unique structural architecture and is the only known LDT to have two different peptidoglycan-binding domains.


Assuntos
Acinetobacter baumannii , Peptidil Transferases , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Carbapenêmicos/química , Carbapenêmicos/farmacologia , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886967

RESUMO

The human gut symbiont Lacticaseibacillus (L.) casei (previously Lactobacillus casei) is under intense research due to its wide range of immunomodulatory effects on the human host. Dendritic cells (DCs) are crucial players in the direct and indirect communication with lactobacilli in the gastrointestinal tract. Here, we demonstrate that human monocyte-derived DCs (moDCs) are able to engulf L. casei BL23, in which the intact bacterial cell wall and morphology have a key role. The absence of the bacterial cell-wall-degrading enzyme, Lc-p75, in L. casei cells causes remarkable morphological changes, which have important consequences in the phagocytosis of L. casei by moDCs. Our results showed that the Lc-p75 mutation induced defective internalization and impaired proinflammatory and T-cell-polarizing cytokine secretion by bacteria-exposed moDCs. The T helper (Th) 1 and Th17 cell activating capacity of moDCs induced by the mutant L. casei was consequently reduced. Moreover, inhibition of the phagocytosis of wild-type bacteria showed similar results. Taken together, these data suggested that formation of short bacterial chains helps to exert the potent immunomodulatory properties of L. casei BL23.


Assuntos
Células Dendríticas , Lacticaseibacillus casei , N-Acetil-Muramil-L-Alanina Amidase , Células Dendríticas/imunologia , Humanos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/imunologia , Lacticaseibacillus casei/fisiologia , Monócitos/imunologia , N-Acetil-Muramil-L-Alanina Amidase/biossíntese , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/imunologia , Fagocitose
9.
mBio ; 13(3): e0036722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420470

RESUMO

Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to ß-lactam antibiotics by producing ß-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of ß-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen's production of carbapenem-hydrolyzing class D ß-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-ß-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections. IMPORTANCE Carbapenem antibiotics are the drugs of choice for treatment of deadly infections caused by Gram-negative bacteria. However, their efficacy is severely compromised by the wide spread of carbapenem-hydrolyzing class D ß-lactamases (CHDLs). The importance of this research is the discovery that substitution of the canonical hydroxyethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Inibidores de beta-Lactamases , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
10.
Antimicrob Agents Chemother ; 66(1): e0172921, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34780270

RESUMO

Resistance to ß-lactams, the most used antibiotics worldwide, constitutes the major problem for the treatment of bacterial infections. In the nosocomial pathogen Acinetobacter baumannii, ß-lactamase-mediated resistance to the carbapenem family of ß-lactam antibiotics has resulted in the selection and dissemination of multidrug-resistant isolates, which often cause infections characterized by high mortality rates. There is thus an urgent demand for new ß-lactamase-resistant antibiotics that also inhibit their targets, penicillin-binding proteins (PBPs). As some PBPs are indispensable for the biosynthesis of the bacterial cell wall and survival, we evaluated their importance for the growth of A. baumannii by performing gene inactivation studies of d,d-transpeptidase domains of high-molecular-mass (HMM) PBPs individually and in combination with one another. We show that PBP3 is essential for A. baumannii survival, as deletion mutants of this d,d-transpeptidase were not viable. The inactivation of PBP1a resulted in partial cell lysis and retardation of bacterial growth, and these effects were further enhanced by the additional inactivation of PBP2 but not PBP1b. Susceptibility to ß-lactam antibiotics increased 4- to 8-fold for the A. baumannii PBP1a/PBP1b/PBP2 triple mutant and 2- to 4-fold for all remaining mutants. Analysis of the peptidoglycan structure revealed a significant change in the muropeptide composition of the triple mutant and demonstrated that the lack of d,d-transpeptidase activity of PBP1a, PBP1b, and PBP2 is compensated for by an increase in the l,d-transpeptidase-mediated cross-linking activity of LdtJ. Overall, our data showed that in addition to essential PBP3, the simultaneous inhibition of PBP1a and PBP2 or PBPs in combination with LdtJ could represent potential strategies for the design of novel drugs against A. baumannii.


Assuntos
Acinetobacter baumannii , Peptidil Transferases , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
11.
JAMA Ophthalmol ; 139(9): 983-989, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34264292

RESUMO

IMPORTANCE: Glaucoma affects more than 75 million people worldwide. Intraocular pressure (IOP)-lowering surgery is an important treatment for this disease. Interest in reducing surgical morbidity has led to the introduction of minimally invasive glaucoma surgeries (MIGS). Understanding the comparative effectiveness and safety of MIGS is necessary for clinicians and patients. OBJECTIVE: To summarize data from randomized clinical trials of MIGS for open-angle glaucoma, which were evaluated in a suite of Cochrane reviews. DATA SOURCES: The Cochrane Database of Systematic Reviews including studies published before June 1, 2021. STUDY SELECTION: Reviews of randomized clinical trials comparing MIGS with cataract extraction alone, other MIGS, traditional glaucoma surgery, laser trabeculoplasty, or medical therapy. DATA EXTRACTION AND SYNTHESIS: Data were extracted according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines by one investigator and confirmed by a second. Methodologic rigor was assessed using the AMSTAR 2 appraisal tool and random-effects network meta-analyses were conducted. MAIN OUTCOMES AND MEASURES: The proportion of participants who did not need to use medication to reduce intraocular pressure (IOP) postsurgery (drop-free). Outcomes were analyzed at short-term (<6 months), medium-term (6-18 months), and long-term (>18 months) follow-up. RESULTS: Six eligible Cochrane reviews were identified discussing trabecular bypass with iStent or Hydrus microstents, ab interno trabeculotomy with Trabectome, subconjunctival and supraciliary drainage devices, and endoscopic cyclophotocoagulation. Moderate certainty evidence indicated that adding a Hydrus safely improved the likelihood of drop-free glaucoma control at medium-term (relative risk [RR], 1.6; 95% CI, 1.4 to 1.8) and long-term (RR, 1.6; 95% CI, 1.4 to 1.9) follow-up and conferred 2.0-mm Hg (95% CI, -2.7 to -1.3 mm Hg) greater IOP reduction at long-term follow-up, compared with cataract surgery alone. Adding an iStent also safely improved drop-free disease control compared with cataract surgery alone (RR, 1.4; 95% CI, 1.2 to 1.6), but the short-term IOP-lowering effect of the iStent was not sustained. Addition of a CyPass microstent improved drop-free glaucoma control compared with cataract surgery alone (RR, 1.3; 95% CI, 1.1 to 1.5) but was associated with an increased risk of vraision loss. Network meta-analyses supported the direction and magnitude of these results. CONCLUSIONS AND RELEVANCE: Based on data synthesized in Cochrane reviews, some MIGS may afford patients with glaucoma greater drop-free disease control than cataract surgery alone. Among the products currently available, randomized clinical trial data associate the Hydrus with greater drop-free glaucoma control and IOP lowering than the iStent; however, these effect sizes were small.


Assuntos
Catarata , Glaucoma de Ângulo Aberto , Glaucoma , Trabeculectomia , Catarata/complicações , Glaucoma/cirurgia , Glaucoma de Ângulo Aberto/complicações , Glaucoma de Ângulo Aberto/cirurgia , Humanos , Pressão Intraocular , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Revisões Sistemáticas como Assunto , Trabeculectomia/métodos
12.
iScience ; 24(4): 102312, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33855282

RESUMO

Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies.

13.
J Hazard Mater ; 416: 125788, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838512

RESUMO

Aflatoxin B1-contaminated feeds and foods induce various health problems in domesticated animals and humans, including tumor development and hepatotoxicity. Aflatoxin B1 also has embryotoxic effects in different livestock species and humans. However, it is difficult to distinguish between the indirect, maternally-mediated toxic effects and the direct embryotoxicity of aflatoxin B1 in mammals. In the present study, we investigated the aflatoxin B1-induced direct embryotoxic effects in a zebrafish embryo model system combining toxicological, transcriptomic, immunological, and biochemical approaches. Embryonic exposure to aflatoxin B1 induced significant changes at the transcriptome level resulting in elevated expression of inflammatory gene network and repression of lipid metabolism and gastrointestinal tract development-related gene sets. According to the gene expression changes, massive neutrophil granulocyte influx, elevated nitric oxide production, and yolk lipid accumulation were observed in the abdominal region of aflatoxin B1-exposed larvae. In parallel, aflatoxin B1-induced defective gastrointestinal tract development and reduced L-arginine level were found in our model system. Our results revealed the complex direct embryotoxic effects of aflatoxin B1, including inhibited lipid utilization, defective intestinal development, and inflammation.


Assuntos
Aflatoxina B1 , Peixe-Zebra , Aflatoxina B1/toxicidade , Animais , Trato Gastrointestinal , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Mobilização Lipídica , Transcriptoma , Peixe-Zebra/genética
14.
ACS Infect Dis ; 7(6): 1765-1776, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33908775

RESUMO

Class D ß-lactamases have risen to notoriety due to their wide spread in bacterial pathogens, propensity to inactivate clinically important ß-lactam antibiotics, and ability to withstand inhibition by the majority of classical ß-lactamase inhibitors. Understanding the catalytic mechanism of these enzymes is thus vitally important for the development of novel antibiotics and inhibitors active against infections caused by antibiotic-resistant bacteria. Here we report an in crystallo time-resolved study of the interaction of the class D ß-lactamase CDD-1 from Clostridioides difficile with the diazobicyclooctane inhibitor, avibactam. We show that the catalytic carboxylated lysine, a residue that is essential for both acylation and deacylation of ß-lactams, is sequestered within an internal sealed pocket of the enzyme. Time-resolved snapshots generated in this study allowed us to observe decarboxylation of the lysine and movement of CO2 and water molecules through a transient channel formed between the lysine pocket and the substrate binding site facilitated by rotation of the side chain of a conserved leucine residue. These studies provide novel insights on avibactam binding to CDD-1 and into the catalytic mechanism of class D ß-lactamases in general.


Assuntos
Clostridioides , beta-Lactamases , Compostos Azabicíclicos , Modelos Moleculares , beta-Lactamases/genética
15.
ACS Infect Dis ; 7(5): 1164-1176, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33390002

RESUMO

Avibactam is a potent diazobicyclooctane inhibitor of class A and C ß-lactamases. The inhibitor also exhibits variable activity against some class D enzymes from Gram-negative bacteria; however, its interaction with recently discovered class D ß-lactamases from Gram-positive bacteria has not been studied. Here, we describe microbiological, kinetic, and mass spectrometry studies of the interaction of avibactam with CDD-1, a class D ß-lactamase from the clinically important pathogen Clostridioides difficile, and show that avibactam is a potent irreversible mechanism-based inhibitor of the enzyme. X-ray crystallographic studies at three time-points demonstrate the rapid formation of a stable CDD-1-avibactam acyl-enzyme complex and highlight differences in the anchoring of the inhibitor by class D enzymes from Gram-positive and Gram-negative bacteria.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Clostridioides , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Inibidores de beta-Lactamases/farmacologia
16.
J Struct Biol ; 211(2): 107544, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512156

RESUMO

The expression of ß-lactamases is a major mechanism of bacterial resistance to the ß-lactam antibiotics. Four molecular classes of ß-lactamases have been described (A, B, C and D), however until recently the class D enzymes were thought to exist only in Gram-negative bacteria. In the last few years, class D enzymes have been discovered in several species of Gram-positive microorganisms, such as Bacillus and Clostridia, and an investigation of their kinetic and structural properties has begun in earnest. Interestingly, it was observed that some species of Bacillus produce two distinct class D ß-lactamases, one highly active and the other with only basal catalytic activity. Analysis of amino acid sequences of active (BPU-1 from Bacillus pumilus) and inactive (BSU-2 from Bacillus subtilis and BAT-2 from Bacillus atrophaeus) enzymes suggests that presence of three additional amino acid residues in one of the surface loops of inefficient ß-lactamases may be responsible for their severely diminished activity. Our structural and docking studies show that the elongated loop of these enzymes severely restricts binding of substrates. Deletion of the three residues from the loops of BSU-2 and BAT-2 ß-lactamases relieves the steric hindrance and results in a significant increase in the catalytic activity of the enzymes. These data show that this surface loop plays an important role in modulation of the catalytic activity of Bacillus class D ß-lactamases.


Assuntos
Antibacterianos/química , Farmacorresistência Bacteriana/genética , Conformação Proteica , beta-Lactamases/ultraestrutura , Sequência de Aminoácidos/genética , Bacillus pumilus/efeitos dos fármacos , Bacillus pumilus/enzimologia , Bacillus subtilis/enzimologia , Domínio Catalítico/genética , Clostridiaceae/enzimologia , Cristalografia por Raios X , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Propriedades de Superfície , beta-Lactamases/química , beta-Lactamases/genética
17.
FEBS Open Bio ; 10(8): 1492-1502, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32473089

RESUMO

Neutrophils represent the most abundant cell type in peripheral blood and exhibit a remarkably brief (6-8 h) half-life in circulation. The fundamental role of these professional phagocytes has been established in acute inflammation, based on their potential to both initiate and receive inflammatory signals. Furthermore, neutrophils also take part in maintaining chronic inflammatory processes, such as in various autoimmune diseases. Here, we demonstrate that human autologous apoptotic neutrophils are readily engulfed by immature monocyte-derived dendritic cells (moDCs) with similar efficiency as allogeneic apoptotic neutrophils [Majai G et al. (2010) J Leukoc Biol 88, 981-991]. Interestingly, in contrast to the allogeneic system, exposure of moDCs to autologous apoptotic neutrophils inhibits LPS + IFN-γ-induced production of inflammatory cytokines in a phagocytosis-independent manner. Autologous apoptotic neutrophil-primed DCs are able to modulate T-cell responses by inducing the generation of IFN-γ-secreting cells while hampering that of IL-17A-producing cells. Our observations indicate that capture of autologous apoptotic neutrophils by immature DCs may impede further neutrophil-mediated phagocytosis and tissue damage, and allow increased clearance of dying cells by macrophages.


Assuntos
Citocinas/antagonistas & inibidores , Células Dendríticas/metabolismo , Neutrófilos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos , Neutrófilos/citologia , Células Th1 , Transplante Autólogo
18.
Cell ; 180(4): 749-763.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059780

RESUMO

Immune responses in diverse tissue sites are critical for protective immunity and homeostasis. Here, we investigate how tissue localization regulates the development and function of human natural killer (NK) cells, innate lymphocytes important for anti-viral and tumor immunity. Integrating high-dimensional analysis of NK cells from blood, lymphoid organs, and mucosal tissue sites from 60 individuals, we identify tissue-specific patterns of NK cell subset distribution, maturation, and function maintained across age and between individuals. Mature and terminally differentiated NK cells with enhanced effector function predominate in blood, bone marrow, spleen, and lungs and exhibit shared transcriptional programs across sites. By contrast, precursor and immature NK cells with reduced effector capacity populate lymph nodes and intestines and exhibit tissue-resident signatures and site-specific adaptations. Together, our results reveal anatomic control of NK cell development and maintenance as tissue-resident populations, whereas mature, terminally differentiated subsets mediate immunosurveillance through diverse peripheral sites. VIDEO ABSTRACT.


Assuntos
Envelhecimento/imunologia , Células Matadoras Naturais/citologia , Linfopoese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Criança , Feminino , Humanos , Imunidade Inata , Mucosa Intestinal/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Pulmão/citologia , Linfonodos/citologia , Masculino , Pessoa de Meia-Idade , Baço/citologia
19.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1129-1137, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793906

RESUMO

Aminoglycoside phosphotransferases (APHs) are one of three families of aminoglycoside-modifying enzymes that confer high-level resistance to the aminoglycoside antibiotics via enzymatic modification. This has now rendered many clinically important drugs almost obsolete. The APHs specifically phosphorylate hydroxyl groups on the aminoglycosides using a nucleotide triphosphate as the phosphate donor. The APH(2'') family comprises four distinct members, isolated primarily from Enterococcus sp., which vary in their substrate specificities and also in their preference for the phosphate donor (ATP or GTP). The structure of the ternary complex of APH(2'')-IIIa with GDP and kanamycin was solved at 1.34 Šresolution and was compared with substrate-bound structures of APH(2'')-Ia, APH(2'')-IIa and APH(2'')-IVa. In contrast to the case for APH(2'')-Ia, where it was proposed that the enzyme-mediated hydrolysis of GTP is regulated by conformational changes in its N-terminal domain upon GTP binding, APH(2'')-IIa, APH(2'')-IIIa and APH(2'')-IVa show no such regulatory mechanism, primarily owing to structural differences in the N-terminal domains of these enzymes.


Assuntos
Enterococcus/enzimologia , Guanosina Trifosfato/química , Canamicina/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
20.
J Struct Biol ; 208(3): 107391, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550535

RESUMO

Class D ß-lactamases, enzymes that degrade ß-lactam antibiotics and are widely spread in Gram-negative bacteria, were for a long time not known in Gram-positive organisms. Recently, these enzymes were identified in various non-pathogenic Bacillus species and subsequently in Clostridioides difficile, a major clinical pathogen associated with high morbidity and mortality rates. Comparison of the BPU-1 enzyme from Bacillus pumilus with the CDD-1 and CDD-2 enzymes from C. difficile demonstrated that the latter enzymes have broadened their substrate profile to efficiently hydrolyze the expanded-spectrum methoxyimino cephalosporins, cefotaxime and ceftriaxone. These two antibiotics are major contributors to the development of C. difficile infection, as they suppress sensitive bacterial microflora in the gut but fail to kill the pathogen which is highly resistant to these drugs. To gain insight into the structural features that contribute to the expansion of the substrate profile of CDD enzymes compared to BPU-1, we solved the crystal structures of CDD-1 and its complex with cefotaxime. Comparison of CDD-1 structures with those of class D enzymes from Gram-negative bacteria showed that in the cefotaxime-CDD-1 complex, the antibiotic is bound in a substantially different mode due to structural differences in the enzymes' active sites. We also found that CDD-1 has a uniquely long Ω-loop when compared to all other class D ß-lactamases. This Ω-loop extension allows it to engage in hydrogen bonding with the acylated cefotaxime, thus providing additional stabilizing interactions with the substrate which could be responsible for the high catalytic activity of the enzyme for expanded-spectrum cephalosporins.


Assuntos
Clostridioides difficile/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cefotaxima/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA