Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9469, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658583

RESUMO

Bovine mastitis caused by S. aureus has a major economic impact on the dairy sector. With the crucial need for new therapies, anti-virulence strategies have gained attention as alternatives to antibiotics. Here we aimed to identify novel compounds that inhibit the production/activity of hemolysins, a virulence factor of S. aureus associated with mastitis severity. We screened Bacillus strains obtained from diverse sources for compounds showing anti-hemolytic activity. Our results demonstrate that lipopeptides produced by Bacillus spp. completely prevented the hemolytic activity of S. aureus at certain concentrations. Following purification, both iturins, fengycins, and surfactins were able to reduce hemolysis caused by S. aureus, with iturins showing the highest anti-hemolytic activity (up to 76% reduction). The lipopeptides showed an effect at the post-translational level. Molecular docking simulations demonstrated that these compounds can bind to hemolysin, possibly interfering with enzyme action. Lastly, molecular dynamics analysis indicated general stability of important residues for hemolysin activity as well as the presence of hydrogen bonds between iturins and these residues, with longevous interactions. Our data reveals, for the first time, an anti-hemolytic activity of lipopeptides and highlights the potential application of iturins as an anti-virulence therapy to control bovine mastitis caused by S. aureus.


Assuntos
Bacillus , Proteínas Hemolisinas , Hemólise , Lipopeptídeos , Simulação de Acoplamento Molecular , Staphylococcus aureus , Bacillus/metabolismo , Bacillus/química , Staphylococcus aureus/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Animais , Bovinos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Feminino , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Simulação de Dinâmica Molecular
2.
Int J Biol Macromol ; 253(Pt 2): 126689, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678679

RESUMO

Bovine mastitis is a costly disease in the dairy sector worldwide. Here the objective was to identify and characterize anti-biofilm compounds produced by Bacillus spp. against S. aureus associated with bovine mastitis. Results showed that cell-free supernatants of three Bacillus strains (out of 33 analysed) reduced S. aureus biofilm formation by approximately 40 % without affecting bacterial growth. The anti-biofilm activity was associated with exopolysaccharides (EPS) secreted by Bacillus spp. The EPS decreased S. aureus biofilm formation in a dose-dependent manner, inhibiting biofilm formation by 83 % at 1 mg/mL. The EPS also showed some biofilm disruption activity (up to 36.4 %), which may be partially mediated by increased expression of the aur gene. The characterization of EPS produced by Bacillus velezensis 87 and B. velezensis TR47II revealed macromolecules with molecular weights of 31.2 and 33.7 kDa, respectively. These macromolecules were composed mainly of glucose (mean = 218.5 µg/mg) and mannose (mean = 241.5 µg/mg) and had similar functional groups (pyranose ring, beta-type glycosidic linkage, and alkynes) as revealed by FT-IR. In conclusion, this study shows the potential applications of EPS produced by B. velezensis as an anti-biofilm compound that could contribute to the treatment of bovine mastitis caused by S. aureus.


Assuntos
Bacillus , Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Staphylococcus aureus/genética , Mastite Bovina/tratamento farmacológico , Mastite Bovina/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Infecções Estafilocócicas/microbiologia , Biofilmes
3.
Braz J Microbiol ; 54(1): 239-258, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701110

RESUMO

A novel bacterial strain, designated GeG2T, was isolated from soils of the native Cerrado, a highly biodiverse savanna-like Brazilian biome. 16S rRNA gene analysis of GeG2T revealed high sequence identity (100%) to the alphaproteobacterium Novosphingobium rosa; however, comparisons with N. rosa DSM 7285T showed several distinctive features, prompting a full characterization of the new strain in terms of physiology, morphology, and, ultimately, its genome. GeG2T cells were Gram-stain-negative bacilli, facultatively anaerobic, motile, positive for catalase and oxidase activities, and starch hydrolysis. Strain GeG2T presented planktonic-sessile dimorphism and cell aggregates surrounded by extracellular matrix and nanometric spherical structures were observed, suggesting the production of exopolysaccharides (EPS) and outer membrane vesicles (OMVs). Despite high 16S rDNA identity, strain GeG2T showed 90.38% average nucleotide identity and 42.60% digital DNA-DNA hybridization identity with N. rosa, below species threshold. Whole-genome assembly revealed four circular replicons: a 4.1 Mb chromosome, a 2.7 Mb extrachromosomal megareplicon, and two plasmids (212.7 and 68.6 kb). The megareplicon contains a few core genes and plasmid-type replication/maintenance systems, consistent with its classification as a chromid. Genome annotation shows a vast repertoire of carbohydrate-active enzymes and genes involved in the degradation of aromatic compounds, highlighting the biotechnological potential of the new isolate. Chemotaxonomic features, including polar lipid and fatty acid profiles, as well as physiological, molecular, and whole-genome comparisons showed significant differences between strain GeG2T and N. rosa, indicating that it represents a novel species, for which the name Novosphingobium terrae is proposed. The type strain is GeG2T (= CBMAI 2313T = CBAS 753 T).


Assuntos
Fosfolipídeos , Solo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Ubiquinona/química , Ubiquinona/genética , Filogenia , Técnicas de Tipagem Bacteriana , Microbiologia do Solo , Ácidos Graxos/química , Genômica
4.
J Environ Health Sci Eng ; 20(2): 785-798, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36406624

RESUMO

Studies reporting the performance of anaerobic sequencing batch reactor (AnSBR) operating with high organic loadings are scarce. This study aimed to contribute to the technical and scientific literature by reporting the experience obtained when biodiesel wastewater was treated in an AnSBR applying organic loading rates (OLR) above those commonly used in batch reactor projects. For this, physicochemical and chromatographic analysis of the effluent were carried out. Further, the biomass was assessed chemically and morphologically, along with bacterial diversity characteristics. Supported by these analyses, the system performance was discussed in terms of COD remotion efficiency and buffering capacity. The AnSBR reached 10% of COD removal at the steady-state, which caused the biomass defragmentation and facilitated washout. This suggests that the startup and operation of AnSBR under optimized conditions with an average applied OLR of 11.3 gCOD L-1 d-1 worked as a pressure for the microbiota selection, stimulating the production of total volatile acids, which promoted system reduction efficiency and souring. In this context, food/microorganism ratios above 1.0 gCOD gTVS -1 d-1 can favor acidogenic activity, and total volatile acids/bicarbonate alkalinity concentration ratios above 1.9 may indicate acidification. The addition of support material for immobilizing/increasing biomass retention and/or operation under two-stage may be interesting alternatives for increasing AnSBR efficiencies under high OLRs.

5.
Braz J Microbiol ; 53(4): 2051-2063, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083529

RESUMO

Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.


Assuntos
Bacillus subtilis , Peptídeos Cíclicos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Filogenia , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Lipopeptídeos , Óperon , Proteínas de Bactérias/metabolismo
6.
Heliyon ; 8(8): e09938, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35965982

RESUMO

Excessive use of herbicides decreases soil biodiversity and fertility. The literature on the xenobiotic response by microorganisms is focused on herbicide biodegradation as a selective event. Non-degradation systems independent of selection could allow the survival of tolerant bacteria in contaminated environments, impacting xenobiotic turnover and, consequently, bioremediation strategies. However, it is uncertain whether the response based on these systems requires selective pressure to be effective. The objective here was to analyze non-degradation phenotypes, enzymatic and structural response systems, of Pseudomonas fluorescens CMA-55 strain, already investigated the production pattern of quorum sensing molecules in response to glyphosate, not present at the isolation site. One mode of response was associated with decrease in membrane permeability and effective antioxidative response for 0-2.30 mM glyphosate, at the mid-log growing phase, with higher activities of Mn-SOD, KatA, and KatB, and presence of fatty acids as nonadecylic acid, margaric and lauric acid. The second response system was characterized by lower antioxidative enzymes activity, presence of KatC isoform, and pelargonic, capric, myristic, stearic, palmitoleic and palmitic acid as principal fatty acids, allowing the strain to face stressful conditions in 9.20-11.50 mM glyphosate at the stationary phase. Therefore, the bacterial strain could modify the fatty acid composition and the permeability of membranes in two response modes according to the herbicide concentration, even glyphosate was not previously selective for P. fluorescens, featuring a generalist system based on physiological plasticity.

7.
3 Biotech ; 11(4): 172, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927963

RESUMO

The resistance of Aedes aegypti to chemical insecticides has been reported and our work proposes the use of biosurfactants as an alternative larvicide. We evaluated the effect of rhamnolipids against larvae of pyrethroid-resistant and susceptible A. aegypti strains. Time-mortality and sublethal effects were evaluated via survival analysis and swimming behavior, respectively. Rhamnolipids showed larvicidal effect at all tested concentrations. Rhamnolipids at 300 mg L-1 killed 100% of both susceptible and resistant larvae within 24 h of exposure and 99% after 30-days stored (pyrethroid-susceptible larvae). Regarding the sublethal effects, the swimming rate was reduced in 50 and 100 mg L-1 of rhamnolipids in grouped (pyrethroid-susceptible) larvae. Rhamnolipids at 50 mg L-1 reduced the distance and speed and increased the number of stops and resting time of individualized pyrethroid-susceptible larvae. The larvicidal effect of the rhamnolipids evaluated demonstrates that these compounds represent an alternative to control A. aegypti.

8.
Braz J Microbiol ; 52(2): 787-800, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33813729

RESUMO

Crude oil extracted from oilfield reservoirs brings together hypersaline produced water. Failure in pipelines transporting this mixture causes contamination of the soil with oil and hypersaline water. Soil salinization is harmful to biological populations, impairing the biodegradation of contaminants. We simulated the contamination of a soil from an oilfield with produced water containing different concentrations of NaCl and crude oil, in order to evaluate the effect of salinity and hydrocarbon concentration on prokaryote community structure and biodegradation activity. Microcosms were incubated in CO2-measuring respirometer. After the incubation, residual aliphatic hydrocarbons were quantified and were performed 16S rRNA gene sequencing. An increase in CO2 emission and hydrocarbon biodegradation was observed with increasing oil concentration up to 100 g kg-1. Alpha diversity decreased in oil-contaminated soils with an increase in the relative abundance of Actinobacteria and reduction of Bacteroidetes with increasing oil concentration. In the NaCl-contaminated soils, alpha diversity, CO2 emission, and hydrocarbon biodegradation decreased with increasing NaCl concentration. There was an increase in the relative abundance of Firmicutes and Proteobacteria and a reduction of Actinobacteria with increasing salt concentration. Our results highlight the need to adopt specific bioremediation strategies in soils impacted by mixtures of crude oil and hypersaline produced water.


Assuntos
Microbiota , Campos de Petróleo e Gás/microbiologia , Petróleo/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Hidrocarbonetos/metabolismo , Microbiota/genética , Petróleo/microbiologia , RNA Ribossômico 16S/genética , Salinidade , Cloreto de Sódio/metabolismo , Solo/química
9.
Braz J Microbiol ; 52(1): 325-333, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33155174

RESUMO

Strain K001 was isolated from a cyanobacterial culture derived from Abrolhos, a reef bank microbial mat (South Atlantic Ocean-Brazil). Cells of K001 are Gram stain-negative, catalase and oxidase-positive, non-motile, rod-shaped, and with or without appendages. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain K001 belongs to the genus Muricauda. The highest strain K001 16S rRNA gene identity, ANI, and dDDH, respectively, are with M. aquimarina (98.90%, 79.23, 21.60%), M. ruestringensis (98.20%, 80.82, 23.40%), and M. lutimaris (97.86%, 79.23, 22.70%). The strain grows at 15-37 °C and between 0.5 and 10% NaCl. The major fatty acids of strain K001 are iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The polar lipids are represented by phosphatidylethanolamine, three unidentified aminolipids, and three unidentified polar lipids. The major respiratory quinone is MK-6. The G+C content of the DNA of strain K001 is 41.62 mol%. Based on polyphasic analysis of strain K001, it was identified as a novel representative of the genus Muricauda and was named Muricauda brasiliensis sp. nov. The type strain is K001 (=CBMAI 2315T = CBAS 752T).


Assuntos
Cianobactérias/metabolismo , Flavobacteriaceae/classificação , Flavobacteriaceae/genética , Genoma Bacteriano , Filogenia , Composição de Bases , Brasil , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
10.
Environ Pollut ; 267: 115579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254655

RESUMO

LIMITATIONS: of bioaugmentation strategies are an obstacle for damage mitigation caused by oil spills in marine environments. Cells added to the contaminated sites are quickly lost by low adherence to the contaminants, rendering ineffective. This study used two hydrocarbonoclastic species - Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 cells - growing in mineral medium containing hexadecane to evaluate cell distribution in a crude-oil contaminated marine water. Cell affinity to hydrophobic compounds was quantified using Microbial Adhesion to Hydrocarbons test and analysis of fatty acids profile was performed using the Microbial Identification System. Bioremediation simulations were set up and cell populations of both strains were quantified by Fluorescent in situ Hybridization. R. rhodochrous and N. farcinica reached up to 97% and 60% of adhesion to hexadecane, respectively. The carbon source had more influence on the fatty acid profiles of both strains than the microbial species. The presence of 45.24% of 13:0 anteiso on total fatty acids in R. rhodochrous and 12.35% of saturated fatty acids with less than 13 carbons atoms in N. farcinica, as well as the occurrence of fatty alcohols only in presence of hexadecane in both species, are indicators that fatty acid changes are involved in the adaptation of the cells to remain at the water/oil interface. Cell quantification after bioremediation simulations revealed an increase in the density of both species, suggesting that the bioremediation strategies resulted on the increase of hydrocarbonoclastic species and up to 27.9% of all prokaryotic microbial populations in the microcosms were composed of R. rhodochrous or N. farcinica. These findings show the potential of application of these two bacterial strains in bioaugmentation of hydrocarbon-contaminated marine ecosystems.R. rhodochrous TRN7 and N. farcinica TRH1 hydrocarbonoclastic strains modify the fatty acid profile and increases density, optimizing hydrocarbons biodegradation.


Assuntos
Ecossistema , Petróleo , Alcanos , Biodegradação Ambiental , Hidrocarbonetos , Hibridização in Situ Fluorescente , Nocardia , Rhodococcus
11.
3 Biotech ; 10(11): 474, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33072469

RESUMO

This study aimed to investigate the antimicrobial, antibiofilm, and cytotoxic effects of biosurfactant lipopeptides synthesized by Bacillus subtilis TR47II. For this purpose, the lipopeptides were partially purified using a three-step process and characterized. In the first step, the crude extract obtained from acid precipitation exhibited strong antibacterial activity against the Gram-negative opportunistic pathogens Alcaligenes faecalis ATCC 8750, Achromobacter xylosoxidans ATCC 13138, Pseudomonas alcaligenes ATCC 14909, and Pseudomonas putida ATCC 15175. Moreover, partial inhibition was observed against Klebsiella aerogenes ATCC 13048 (42%), Escherichia coli ATCC 25922 (16%), and Pseudomonas aeruginosa ATCC 27853 (47%). The lipopeptides in the crude extract were extracted with methanol and fractioned on a silica gel chromatography column, rendering four TLC-pooled chromatographic fractions, named F1, F2, F3, and F4. The chromatographic fraction F4 was the most bioactive, with MIC values between 300 and 600 µg mL-1. Besides, F4 at sub-MIC doses dislodged the biofilms of A. faecalis, A. xylosoxidans, and P. alcaligenes by about 100, 85, and 81%, respectively. No cytotoxic effect was observed in mammalian cells at MIC. MALDI-TOF-MS analysis revealed that F4 contained cyclic lipopeptides belonging to two families: iturins (m/z 1004 to 1087) and fengycins (m/z 1424 to 1545). The dual effect of F4 on planktonic and sessile growth could suggest that the synergistic application of these biosurfactants could be efficient in the control of these opportunistic pathogens.

12.
3 Biotech ; 10(5): 232, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32399382

RESUMO

In this work, we present the draft genome sequence of Staphylococcus warneri strain TRPF4 consisting of 2,634,550 bp with a G + C content of 32.4%. The genome sequence includes 2466 protein-coding genes, 11 rRNAs and 62 tRNAs, in 33 contigs. Applying the Rapid Annotation using Subsystem Technology (RAST) a total of 1322 protein-coding genes were assigned to 393 subsystems. Also, a set of 1286 protein-coding genes with designated functions were assigned to 21 categories in the Cluster of Orthologous Groups (COG) database. Further analysis of BAGEL3 software demonstrated that the TRPF4 genome contains two gene clusters responsible for the synthesis of three bacteriocins, one warnericin RK and two delta-lysins. Besides, a novel delta-lysin of 3.48 kDa was identified for the first time. The three predicted bacteriocins were chemically synthesized and screened for the antimicrobial activity against a range of pathogens, exhibiting a potent and specific antimicrobial activity counter to L. pneumophila, with minimum inhibitory concentrations (MIC) ranging from 1.9 to 7.8 µg mL-1. These results indicate that the strain TRPF4 can produce bacteriocins with anti-Legionella activity. This was verified by the extracting the bacteriocins from the fermentation broth and testing against L. pneumophila. Additionally, the strain TRPF4 exhibited no cytotoxicity in mammalian cell lines. In summary, the genomic sequences and in vitro assays demonstrated the potential application of bacteriocins from S. warneri TRPF4 as a scaffold for further development of drugs against L. pneumophila, the causative agent of Legionnaires' Disease.

13.
Braz J Microbiol ; 51(3): 1159-1168, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32078731

RESUMO

We studied petroleum biodegradation by biostimulation by using water in oil in water (W/O/W) double emulsions. These emulsions were developed using seawater, canola oil, surfactants, and mineral salts as sources of NPK. The emulsions were used in the simulation of hydrocarbon bioremediation in oligotrophic sea water. Hydrocarbon biodegradation was evaluated by CO2 emissions from microcosms. We also evaluated the release of inorganic nutrients and the stability of the emulsion's droplets. The double emulsions improved CO2 emission from the microcosms, suggesting the increase in the hydrocarbon biodegradation. Mineral nutrients were gradually released from the emulsions supporting the hydrocarbon biodegradation. This was attributed to the formation of different diameters of droplets and therefore, varying stabilities of the droplets. Addition of the selected hydrocarbonoclastic isolates simulating bioaugmentation improved the hydrocarbon biodegradation. We conclude that the nutrient-rich W/O/W emulsion developed in this study is an effective biostimulation agent for bioremediation in oligotrophic aquatic environments.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Água do Mar/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Emulsões/análise , Emulsões/metabolismo , Petróleo/análise , Água do Mar/análise , Poluentes Químicos da Água/análise
14.
J Environ Manage ; 236: 358-364, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30739041

RESUMO

Pristine environments may harbor complex microbial communities with metabolic potential for use in bioremediation of organic pollutants. This study aimed to evaluate crude oil biodegradation by microbial communities present in rhizospheric soils of Bulbostylis nesiotis and Cyperus atlanticus on Trindade Island and the compositional structure of these communities. After 60 days under aerobic conditions, Total Petroleum Hydrocarbon biodegradation ranged from 66 to 75%, depending on the plant species and the origin of the soil samples. There was no response of petroleum biodegradation to fertilization with N:P:K (80:160:80 mg dm-3). Soil contamination with crude oil did not necessarily reduce microbial diversity. The richness and diversity increased in contaminated soils in some specific situations. We conclude that microbial communities from pristine soils have the ability to remove hydrocarbons through biodegradation and that Bulbostylis nesiotis and Cyperus atlanticus inhabiting Trindade Island harbor rhizospheric microbial communities with potential for application in rhizoremediation.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Brasil , Hidrocarbonetos , Ilhas , Solo , Microbiologia do Solo
15.
Plant Pathol J ; 34(4): 269-285, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30140181

RESUMO

Bacterial leaf blight is a major disease of eucalypt, especially under nursery conditions. Different bacterial species have been associated with the disease in several countries, and despite its importance worldwide, it is not clear to date whether similar disease symptoms are caused by the same or by different etiological agents. In this study, 43 bacterial strains were isolated from blighted eucalypt leaves collected in different geographic areas of Brazil and inoculated onto a susceptible eucalypt clone. Polyphasic taxonomy, including morphological, physiological, biochemical, molecular, and pathogenicity tests showed that only certain strains of Xanthomonas axonopodis caused symptoms of the disease. Strains varied in their aggressiveness, but no correlation with geographic origin was observed. MLSA-based phylogenetic analysis using concatenated dnaK, fyuA, gyrB and rpoD gene sequences allocated the strains in a well-defined clade, corresponding to Rade-marker's group RG 9.6. Inoculation of nineteen plant species belonging to seven botanical families with representative strain LPF 602 showed it to be pathogenic only on Eucalyptus spp, and Corymbia spp. Based on distinct biochemical and pathogenic characteristics that differentiate the eucalypt strains from other pathovars of the X. axonopodis species, here we propose their allocation into the new pathovar X. axonopodis pv. eucalyptorum pv. nov.

16.
Acta sci., Biol. sci ; 40: e36904, 20180000. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1460841

RESUMO

The effect of successive soil contamination with diesel oil was evaluated on population dynamics of a bacterial consortium (Acinetobacter baumannii LBBMA 04, Pseudomonas aeruginosa LBBMA 58, Ochrobactrum anthropi LBBMA 88b, Acinetobacter baumannii LBBMAES11, and Bacillus subtilis LBBMA 155) and on biodegradation of petroleum hydrocarbons (n-C12-C22). After each contamination with diesel oil, soil samples were collected for assessment of bacterial population and sequence of petroleum hydrocarbons degradation. At 20 and 40 days, the highest percentage of degradation was observed for the higher carbon chain hydrocarbons (n-C21 and C22). After the third contamination, there was a considerable reduction of n-C21degradation and a high degradation of hydrocarbons n-C13-15, C17 and C19, which contrasts with the low values of degradation of these hydrocarbons in the two previous phases. The highest growth rate of all members of the consortium occurred from 0 to 20 days, but population increase continued up to the end of the experiment (except for B. subitillis strain, whose population stabilized after 20 days). Our results show that the recurrent contamination by hydrocarbons affected the population structure of bacterial consortium and increased the total population density of the bacterial consortium.


O efeito da contaminação do solo com óleo diesel foi avaliado sobre a dinâmica populacional bacteriana de um consórcio (Acinetobacter baumannii LBBMA 04, Pseudomonas aeruginosa LBBMA 58, Ochrobactrum anthropi LBBMA 88b, Acinetobacter baumannii LBBMAES11 e Bacillus subtilis LBBMA 155) e sobre a biodegradação de hidrocarbonetos de petróleo (n-C12-C22). Após cada evento de contaminação com óleo diesel, foram coletadas amostras de solo para avaliação das populações bacterianas e da sequência de degradação de hidrocarbonetos de petróleo. Aos 20 e 40 dias, a maior porcentagem de degradação foi observada para os hidrocarbonetos de cadeia de carbono mais elevada (n-C21 e C22). Após a terceira contaminação, houve redução considerável da degradação de n-C21 e alta degradação dos hidrocarbonetos n-C13-15, C17 e C19, o que contrasta com os baixos valores de degradação desses hidrocarbonetos nas duas fases anteriores. A maior taxa de crescimento de todos os membros do consórcio ocorreu entre 0 e 20 dias, mas o aumento populacional continuou até o final do experimento (com exceção da linhagem B. subitilis, cuja população se estabilizou após 20 dias). Os resultados mostram que a contaminação sucessiva do solo com óleo diesel afetou a estrutura populacional do consórcio bacteriano e proporcionou aumento da densidade populacional total das bactérias.

17.
Microb Ecol ; 75(3): 688-700, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28971238

RESUMO

The microbial diversity and functioning around oceanic islands is poorly described, despite its importance for ecosystem homeostasis. Here, we aimed to verify the occurrence of microbe-driven phenanthrene co-oxidation in the seawater surrounding the Trindade Island (Brazil). We also used Next-Generation Sequencing to evaluate the effects of aliphatic and polycyclic aromatic hydrocarbons (PAHs) on these microbial community assemblies. Microcosms containing seawater from the island enriched with either labelled (9-14C) or non-labelled phenanthrene together with hexadecane, weathered oil, fluoranthene or pyrene, and combinations of these compounds were incubated. Biodegradation of phenanthrene-9-14C was negatively affected in the presence of weathered oil and PAHs but increased in the presence of hexadecane. PAH contamination caused shifts in the seawater microbial community-from a highly diverse one dominated by Alphaproteobacteria to less diverse communities dominated by Gammaproteobacteria. Furthermore, the combination of PAHs exerted a compounded negative influence on the microbial community, reducing its diversity and thus functional capacity of the ecosystem. These results advance our understanding of bacterial community dynamics in response to contrasting qualities of hydrocarbon contamination. This understanding is fundamental in the application and monitoring of bioremediation strategies if accidents involving oil spillages occur near Trindade Island and similar ecosystems.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Hidrocarbonetos/efeitos adversos , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/fisiologia , Fenantrenos/metabolismo , Água do Mar/microbiologia , Alcanos , Alphaproteobacteria/efeitos dos fármacos , Alphaproteobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , Brasil , DNA Bacteriano/genética , Ecossistema , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Ilhas , Metagenômica , Consórcios Microbianos/genética , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Pirenos , RNA Ribossômico 16S/metabolismo , Poluentes da Água
18.
J Environ Manage ; 207: 417-422, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190484

RESUMO

C:N:P ratio is generally adopted to estimate the amount of nitrogen and phosphorus to be added to soils to accelerate biodegradation of organic contaminants. However, differences in P fixation among soils lead to varying amounts of available P when a specific dose of the element is applied to different soils. Thus, the application of fertilizers to achieve a previously established C:P ratio leads to biodegradation rates that can be lower than the theoretical maximum. In this study, we developed an equation to estimate the dose of P required to maximize organic contaminant biodegradation in soils as a function of remaining P (P-rem), using diesel as a model contaminant. The soils were contaminated with diesel and received six doses of P. CO2 emission was used to estimate biodegradation of hydrocarbons. Biodegradation increased with P doses. The P level that provided the highest hydrocarbon biodegradation rate showed linear and negative correlation with P-rem. The result shows that the requirement for P decreases as the P-rem of the soil increases (or the P-fixing capacity decreases). The dose of P recommended to maximize hydrocarbon biodegradation rate in soil can be estimated by the formula P (mg/dm3) = 436.5-5.39 × P-rem (mg/L).


Assuntos
Biodegradação Ambiental , Poluentes do Solo , Bactérias , Hidrocarbonetos , Petróleo , Solo , Microbiologia do Solo
19.
Braz. j. microbiol ; 48(2): 342-351, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839370

RESUMO

Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.


Assuntos
Microbiologia do Solo , Poluentes do Solo/metabolismo , Gasolina , Carcinógenos Ambientais/metabolismo , Biota/efeitos dos fármacos , Biodegradação Ambiental , Dióxido de Carbono/análise , Carga Bacteriana , Hidrocarbonetos/análise
20.
Braz J Microbiol ; 48(2): 342-351, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28034596

RESUMO

We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.


Assuntos
Biota/efeitos dos fármacos , Carcinógenos Ambientais/metabolismo , Gasolina , Microbiologia do Solo , Poluentes do Solo/metabolismo , Carga Bacteriana , Biodegradação Ambiental , Dióxido de Carbono/análise , Hidrocarbonetos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA