Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 9624-9637, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38407062

RESUMO

Homoleptic tetramethylaluminates Ln(AlMe4)3 react with KTptBu,Me (TptBu,Me = tris(3-tBu-5-Me-pyrazolyl)borato) to yield rare-earth-metal methylidene complexes (TptBu,Me)Ln(µ3-CH2)[(µ-Me)AlMe2]2 (Ln = La, Ce, Nd). The lanthanum reaction is prone to additional C-H- and B-N-bond activation, affording coproducts La[HB(pzMe,tBu)(pzCMe2,Me)2][(µ-CH2)(µ-Me)AlMe2]2 and [La(µ-pztBu,Me)(AlMe4)2]2 (pztBu,Me = 3-tBu-5-Me-pyrazolato). The protonolysis reaction of Ln(AlMe4)3 and HpztBu,Me provides more efficient access to [Ln(µ-pztBu,Me)(AlMe4)2]2 (Ln = La, Nd). Treatment of Ln(AlMe4)3 with KTpMe,Me led to methylidene complexes (TpMe,Me)Ln(µ3-CH2)[(µ-Me)AlMe2]2 (Ln = Nd, Sm) or bis(tetramethylaluminate) complexes (TpMe,Me)Ln(AlMe4)2 (Ln = Y, Lu). The neodymium reaction generated methine derivative (TpMe,Me)Nd[(µ4-CH)(AlMe2)2(µ-pz,Me,Me)][(µ-Me)AlMe2] as a minor coproduct. The reaction of Ln(GaMe4)3 (Ln = Y, La, Ce, Nd, Sm, Ho) with HTptBu,Me gave methylidene complexes (TptBu,Me)Ln(µ3-CH2)[(µ-Me)GaMe2]2 (Ln = La, Ce, Nd, Sm) and alkyl complexes (TptBu,Me)LnMe[(µ-Me)GaMe3] (Ln = Y, Ho), while competing B-N bond activation reactions produced GaMe2[BH(Me)(µ-pztBu,Me)2] and (TptBu,Me)Ln(η2-pztBu,Me)[(µ-Me)GaMe3] (Ln = Y, Ho). The steric impact of the TpR,Me ligands was examined by cone angle calculations. Rare-earth-metal methylidene complexes (TptBu,Me)Ln(µ3-CH2)[(µ-Me)EMe2]2 (E = Al, Ga) successfully promote carbonyl methylenation reactions upon addition of ketone.

2.
Chemistry ; 29(59): e202302104, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37421647

RESUMO

We present the synthesis of a new type of an expanded porphyrinoid macrocycle with a saddle-shaped morphology and its complexation of C60 guest molecules. The new macrocycle contains four carbazole and four triazole moieties and can be readily synthesized via a copper-catalyzed click reaction. It shows specific photo-physical properties including fluorescence with a high quantum yield of 60 %. The combination of the saddle-shaped geometry with the expanded π-system allows for host-guest interactions with C60 in a stacked polymer fashion. Evidence for the presence of a host-guest complex is provided both in solution by NMR spectroscopy and in the solid state by X-ray structure analysis.

3.
J Am Chem Soc ; 144(9): 4102-4113, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212218

RESUMO

Group 3- and 4f-element organometallic chemistry and reactivity are decisively driven by the rare-earth-metal/lanthanide (Ln) ion size and associated electronegativity/ionicity/Lewis acidity criteria. For these reasons, the synthesis of terminal "unsupported" imides [Ln═NR] of the smaller, closed-shell Sc(III), Lu(III), Y(III), and increasingly covalent Ce(IV) has involved distinct reaction protocols while derivatives of the "early" large Ln(III) have remained elusive. Herein, we report such terminal imides of open-shell lanthanide cations Ce(III), Nd(III), and Sm(III) according to a new reaction protocol. Lewis-acid-stabilized methylidene complexes [TptBu,MeLn(µ3-CH2){(µ2-Me)MMe2}2] (Ln = Ce, Nd, Sm; M = Al, Ga) react with 2,6-diisopropylaniline (H2NAriPr) via methane elimination. The formation of arylimide complexes is governed by the Ln(III) size, the Lewis acidity of the group 13 metal alkyl, steric factors, the presence of a donor solvent, and the sterics and acidity (pKa) of the aromatic amine. Crucially, terminal arylimides [TptBu,MeLn(═NAriPr)(THF)2] (Ln = Ce, Nd, Sm) are formed only for M = Ga, and for M = Al, the Lewis-acid-stabilized imides [TptBu,MeLn(NAriPr)(AlMe3)] (Ln = Ce, Nd, Sm) are persistent. In stark contrast, the [GaMe3]-stabilized imide [TptBu,MeLn(NAriPr)(GaMe3)] (Ln = Nd, Sm) is reversibly formed in noncoordinating solvents.


Assuntos
Elementos da Série dos Lantanídeos , Compostos Organometálicos , Cristalografia por Raios X , Imidas , Íons , Elementos da Série dos Lantanídeos/química , Modelos Moleculares , Compostos Organometálicos/química
4.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977466

RESUMO

Tridentate, bis-phenolate N-heterocyclic carbenes (NHCs) are among the ligands giving the most selective and active group 4-based catalysts for the copolymerization of cyclohexene oxide (CHO) with CO2. In particular, ligands based on imidazolidin-2-ylidene (saturated NHC) moieties have given catalysts which exclusively form polycarbonate in moderate-to-high yields even under low CO2 pressure and at low copolymerization temperatures. Here, to evaluate the influence of the NHC moiety on the molecular structure of the catalyst and its performance in copolymerization, we extend this chemistry by synthesizing and characterizing titanium complexes bearing tridentate bis-phenolate imidazol-2-ylidene (unsaturated NHC) and benzimidazol-2-ylidene (benzannulated NHC) ligands. The electronic properties of the ligands and the nature of their bonds to titanium are studied using density functional theory (DFT) and natural bond orbital (NBO) analysis. The metal-NHC bond distances and bond strengths are governed by ligand-to-metal σ- and π-donation, whereas back-donation directly from the metal to the NHC ligand seems to be less important. The NHC π-acceptor orbitals are still involved in bonding, as they interact with THF and isopropoxide oxygen lone-pair donor orbitals. The new complexes are, when combined with [PPN]Cl co-catalyst, selective in polycarbonate formation. The highest activity, albeit lower than that of the previously reported Ti catalysts based on saturated NHC, was obtained with the benzannulated NHC-Ti catalyst. Attempts to synthesize unsaturated and benzannulated NHC analogues based on Hf invariably led, as in earlier work with Zr, to a mixture of products that include zwitterionic and homoleptic complexes. However, the benzannulated NHC-Hf complexes were obtained as the major products, allowing for isolation. Although these complexes selectively form polycarbonate, their catalytic performance is inferior to that of analogues based on saturated NHC.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Cicloexenos/química , Háfnio/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Titânio/química , Catálise , Metano/química , Modelos Moleculares , Conformação Molecular , Polimerização
5.
Chemistry ; 26(47): 10834-10840, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32329535

RESUMO

Tetramethylaluminato/halogenido(X) ligand exchange reactions in half-sandwich complexes [CpR La(AlMe4 )2 ] are feasible in non-coordinating solvents and provide access to large coordination clusters of the type [CpR LaX2 ]x . Incomplete exchange reactions generate the hexalanthanum clusters [CpR 6 La6 X8 (AlMe4 )4 ] (CpR =Cp*=C5 Me5 , X=I; CpR =Cp'=C5 H4 SiMe3 , X=Br, I). Treatment of [Cp*La(AlMe4 )2 ] with two equivalents Me3 SiI gave the nonalanthanum cluster [Cp*LaI2 ]9 , while the exhaustive reaction of [Cp'La(AlMe4 )2 ] with the halogenido transfer reagents Me3 GeX and Me3 SiX (X=I, Br, Cl) produced a series of monocyclopentadienyl rare-earth-metal clusters with distinct nuclearity. Depending on the halogenido ion size the homometallic clusters [Cp'LaCl2 ]10 and [Cp'LaX2 ]12 (X=Br, I) could be isolated, whereas different crystallization techniques led to the aggregation of clusters of distinct structural motifs, including the desilylated cyclopentadienyl-bridged cluster [(µ-Cp)2 Cp'8 La8 I14 ] and the heteroaluminato derivative [Cp'10 La10 Br18 (AlBr2 Me2 )2 ]. The use of the Cp' ancillary ligand facilitates cluster characterization by means of NMR spectroscopy.

6.
Dalton Trans ; 49(6): 2004-2013, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31989148

RESUMO

The reaction of 2-(6-methyl-2-pyridyl)-1,1-diphenyl-ethanol [HONCH3] with Ln(AlMe4)3 (Ln = La, Nd, Y) via a deprotonation/C-H-bond activation sequence gave complexes [ONCH2]Ln(AlMe3)2(AlMe4) (Ln = La, Nd, Y) bearing the dianionic tridentate ligand [ONCH2]. In contrast, the reactions involving the smaller rare-earth metals yttrium and lutetium resulted in double C-H-bond activation and formation of [ONCH]Ln(AlMe3)3 (Ln = Y, Lu) with the formally trianionic tridentate ligand [ONCH]. The solid-state structures of all complexes as obtained by X-ray structure analysis revealed an axial chirality which could be corroborated by low-temperature 1H NMR spectroscopy. All complexes displayed high activity in the polymerization of isoprene, upon activation with standard fluorinated borate/borane cocatalysts. The catalyst activity and cis-1,4-selectivity could be increased by using of two equivalents of cocatalyst instead of one. For example, when activated with two equivalents of [PhNMe2H][B(C6F5)4] complex [ONCH]Y(AlMe3)3 gave almost complete conversion after 15 minutes fabricating a polyisoprene with a cis-1,4-content of 83.5% (no trans-1,4-content detected).

7.
Molecules ; 24(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618971

RESUMO

As previously shown for lutetium and yttrium, 1,2,3,4,5-pentamethylcyclopentadienyl (C5Me5 = Cp*)-bearing rare-earth metal dimethyl half-sandwich complexes [Cp*LnMe2]3 are now also accessible for holmium, dysprosium, and terbium via tetramethylaluminato cleavage of [Cp*Ln(AlMe4)2] with diethyl ether (Ho, Dy) and tert-butyl methyl ether (TBME) (Tb). C-H-bond activation and ligand redistribution reactions are observed in case of terbium and are dominant for the next larger-sized gadolinium, as evidenced by the formation of mixed methyl/methylidene clusters [(Cp*Ln)5(CH2)(Me)8] and metallocene dimers [Cp*2Ln(AlMe4)]2 (Ln = Tb, Gd). Applying TBME as a "cleaving" reagent can result in both TBME deprotonation and ether cleavage, as shown for the formation of the 24-membered macrocycle [(Cp*Gd)2(Me)(CH2OtBu)2(AlMe4)]4 or monolanthanum complex [Cp*La(AlMe4){Me3Al(CH2)OtBu}] and monoyttrium complex [Cp*Y(AlMe4)(Me3AlOtBu)], respectively. Complexes [Cp*Ln(AlMe4)2] (Ln = Ho, Dy, Tb, Gd) and [Cp*LnMe2]3 (Ln = Ho, Dy) are applied in isoprene and 1,3-butadiene polymerization, upon activation with borates [Ph3C][B(C6F5)4] and [PhNHMe2][B(C6F5)4], as well as borane B(C6F5)3. The trans-directing effect of AlMe3 in the binary systems [Cp*Ln(AlMe4)2]/borate is revealed and further corroborated by the fabrication of high-cis-1,4 polybutadiene (97%) with "aluminum-free" [Cp*DyMe2]3/[Ph3C][B(C6F5)4]. The formation of multimetallic active species is supported by the polymerization activity of pre-isolated cluster [(Cp*Ho)3Me4(CH2)(thf)2].


Assuntos
Butadienos/química , Complexos de Coordenação/química , Hemiterpenos/química , Ligação de Hidrogênio , Metais Terras Raras/química , Polimerização , Modelos Moleculares , Conformação Molecular , Estrutura Molecular
8.
Chem Commun (Camb) ; 55(50): 7227-7230, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31165803

RESUMO

A series of hafnium complexes were structurally identified showing high activity (up to 500 h-1) in the selective alternated copolymerization of epoxides with CO2 under low pressure.

9.
Inorg Chem ; 57(9): 5204-5212, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29630356

RESUMO

In contrast to previously applied salt metathesis protocols the targeted rare-earth-metal compounds Ln[N(SiMe3)2]2(halogenido) were accessed by oxidation of Ln(II) silylamide precursors. Treatment of Sm[N(SiMe3)3]2(thf)2 with 0.5 equiv of C2Cl6 or 0.25 equiv of TeBr4 in thf and crystallization thereof gave [Sm{N(SiMe3)2}2(µ-X)(thf)]2 (X = Cl, Br). A similar reaction/crystallization procedure performed with 0.5 equiv of 1,2-diiodoethane gave monomeric Sm[N(SiMe3)2]2I(thf)2. Switching to Yb[N(SiMe3)2]2(thf)2, the aforementioned oxidants generated monomeric five-coordinate complexes Yb[N(SiMe3)2]2X(thf)2 (X = Cl, Br, I). The reaction of Eu[N(SiMe3)2]2(thf)2 with 0.5 equiv of C2Cl6 in thf yielded the separated ion pair [Eu{N(SiMe3)2}3Cl][(thf)5Eu(µ-Cl)2Eu(thf)5]. Performing the chlorination in n-hexane led to oxidation followed by rapid disproportionation into EuCl3(thf) x and Eu[N(SiMe3)2]3. The bromination reaction did not afford crystalline material, while the iodination gave crystals of divalent EuI2(thf)5. Use of trityl chloride (Ph3CCl) as the oxidant in thf accomplished the Eu(III) species [Eu{N(SiMe3)2}2(µ-Cl)(thf)]2. In situ oxidation of putative [Tm{N(SiMe3)2}2(thf) x] using 0.5 equiv of C2Cl6 in thf followed by crystallization from n-hexane led to the formation of a mixture of [Tm{N(SiMe3)2}2(µ-Cl)(thf)]2 and Tm[N(SiMe3)2]3. Switching the oxidant to 0.5 equiv of 1,2-diiodoethane and crystallizing from thf repeatedly afforded the bis-halogenated complex Tm[N(SiMe3)2]I2(thf)3.

10.
Chem Commun (Camb) ; 54(22): 2735-2738, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29479621

RESUMO

Two zirconium-organic frameworks were synthesized by exchanging the acetate ligands in [Zr12O8(OH)8(CH3COO)24] with polydentate linkers. Partial substitution of acetate groups by a phosphine based linker yielded a new porous framework with this unique dimeric Zr12 cluster unit as molecular building block. More exhaustive substitution of acetate resulted in cleavage of the Zr12 unit and formation of UiO-67.

11.
Chemistry ; 24(20): 5082-5085, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29315883

RESUMO

Single crystal structural analysis of [FeII (tame)2 ]Cl2 ⋅MeOH (tame=1,1,1-tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high-spin octahedral d6 state and a low temperature low-spin ground state without change of the symmetry of the crystal structure. The temperature at which the high and low spin states are present in equal proportions is T1/2 =140 K. Single crystal, variable-temperature optical spectroscopy of [FeII (tame)2 ]Cl2 ⋅MeOH is consistent with this change in electronic ground state. These experimental results confirm the spin activity predicted for [FeII (tame)2 ]2+ during its de novo artificial evolution design as a spin-crossover complex [Chem. Inf. MODEL: 2015, 55, 1844], offering the first experimental validation of a functional transition-metal complex predicted by such in silico molecular design methods. Additional quantum chemical calculations offer, together with the crystal structure analysis, insight into the role of spin-passive structural components. A thermodynamic analysis based on an Ising-like mean field model (Slichter-Drickammer approximation) provides estimates of the enthalpy, entropy and cooperativity of the crossover between the high and low spin states.

12.
J Am Chem Soc ; 139(46): 16609-16619, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29053923

RESUMO

Ruthenium-based olefin metathesis catalysts are used in laboratory-scale organic synthesis across chemistry, largely thanks to their ease of handling and functional group tolerance. In spite of this robustness, these catalysts readily decompose, via little-understood pathways, to species that promote double-bond migration (isomerization) in both the 1-alkene reagents and the internal-alkene products. We have studied, using density functional theory (DFT), the reactivity of the Hoveyda-Grubbs second-generation catalyst 2 with allylbenzene, and discovered a facile new decomposition pathway. In this pathway, the alkylidene ligand is lost, via ring expansion of the metallacyclobutane intermediate, leading to the spin-triplet 12-electron complex (SIMes)RuCl2 (3R21, SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene). DFT calculations predict 3R21 to be a very active alkene isomerization initiator, either operating as a catalyst itself, via a η3-allyl mechanism, or, after spin inversion to give R21 and formation of a cyclometalated Ru-hydride complex, via a hydride mechanism. The calculations also suggest that the alkylidene-free ruthenium complexes may regenerate alkylidene via dinuclear ruthenium activation of alkene. The predicted capacity to initiate isomerization is confirmed in catalytic tests using p-cymene-stabilized R21 (5), which promotes isomerization in particular under conditions favoring dissociation of p-cymene and disfavoring formation of aggregates of 5. The same qualitative trends in the relative metathesis and isomerization selectivities are observed in identical tests of 2, indicating that 5 and 2 share the same catalytic cycles for both metathesis and isomerization, consistent with the calculated reaction network covering metathesis, alkylidene loss, isomerization, and alkylidene regeneration.

13.
Dalton Trans ; 46(25): 8065-8076, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28604887

RESUMO

Tetravalent zirconium complexes supported by tridentate bis-phenolate imidazolidin-2-ylidene (L1), imidazol-2-ylidene (L2) and benzimidazol-2-ylidene (L3) NHC ligands were synthesized and evaluated as precursors for the copolymerization of cyclohexene oxide (CHO) with CO2. While the reactivity of the imidazolidinium [H3L1] chloride salt with Zr(OiPr)4(HOiPr), and subsequent ligand exchanges with either (CH3)3SiCl or LiOiPr lead to a series of heteroleptic compounds (κ3-O,C,O-L1)Zr(X)2(THF) (X = Cl, OiPr), both imidazolium [H3L2] and benzimidazolium [H3L3] chloride salts give a mixture of homoleptic (κ3-O,C,O-NHC)2Zr and zwitterionic (κ2-O,O-HL)ZrCl2(OiPr) compounds along with traces or the absence of the heteroleptic intermediate (κ3-O,C,O-NHC)Zr(Cl)(OiPr)(THF). Such dissimilar reactivity between the unsaturated and saturated NHC ligands is predominantly ascribed to the increased acidity of azolium salts along with the π-donor strength of the Ccarbene in L2 and L3-Zr moieties. The reactivity with the more acidic azolium salts (H3L2/3) and the destabilized Zr-Xtrans to NHCcarbene bond results in a significant increase in the amount of homoleptic compounds generating HCl. The released HCl reacts preferentially with the heteroleptic intermediates having non-planar NHC ligands (i.e. L2/3) promoting the formation of zwitterionic complexes. The in situ deprotonation of the isolated zwitterionic (κ2-O,O-HL3)ZrCl2(OiPr) compound by using Ag2O gives the homoleptic complex as the major component along with a bimetallic hydroxo-bridged [(κ3-O,C,O-L3)Zr(µ-OH)(OiPr)]2 compound. Of particular interest is that only the heteroleptic NHC-Zr(iv) complexes were identified to be active and highly selective towards the copolymerization of CHO with CO2 independently of the co-catalysts used (both anionic and neutral) under mild conditions (PCO2 < 1 bar, T = 60 °C), and gave atactic and completely alternating copolymers in a controlled manner (Mw/Mn ≈ 1.3-1.8). In contrast, the isolated homoleptic, zwitterionic and bimetallic zirconium species were found to be inactive under similar reaction conditions. Although the activity found for NHC-Zr(iv) complexes is nearly of the same order of magnitude as that of the NHC-Ti(iv) analogues, these results are the first examples of tetravalent zirconium complexes achieving high selectivity (99% in PCHC) in the catalyzed copolymerization of CHO with CO2.

14.
Dalton Trans ; 45(35): 13750-65, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27471799

RESUMO

A series of rare-earth metal diisopropylamide complexes has been obtained via salt metathesis employing LnCl3(THF)x and lithium (LDA) or sodium diisopropylamide (NDA) in n-hexane. Reactions with AM : Ln ratios ≥3 gave ate complexes (AM)Ln(NiPr2)4(THF)n (n = 1, 2; Ln = Sc, Y, La, Lu; AM = Li, Na) in good yields. For smaller rare-earth metal centres such as scandium and lutetium, a Li : Ln ratio = 2.5 accomplished ate-free tris(amido) complexes Ln(NiPr2)3(THF). The chloro-bridged dimeric derivatives [Ln(NiPr2)2(µ-Cl)(THF)]2 (Ln = Sc, Y, La, Lu) could be obtained in high yields for Li : Ln = 1.6-2. The product resulting from the Li : La = 1 : 1.6 reaction revealed a crystal structure containing two different molecules in the crystal lattice, [La(NiPr2)2(THF)(µ-Cl)]2·La(NiPr2)3(THF)2. Recrystallization of the chloro-bridged dimers led to the formation of the monomeric species Ln(NiPr2)2Cl(THF)2 (Ln = Sc, Lu) and La(NiPr2)3(THF)2. The reaction of YCl3 and LDA with Li : Y = 2 in the absence of THF gave a bimetallic ate complex LiY(NiPr2)4 with a chain-like structure. For scandium, the equimolar reactions with LDA or NDA yielded crystals of tetrametallic mono(amido) species, {[Sc(NiPr2)Cl2(THF)]2(LiCl)}2 and [Sc(NiPr2)Cl2(THF)]4, respectively. Depending on the Ln(iii) size, AM, and presence of a donor solvent, ate complexes (AM)Ln(NiPr2)4(THF)n show distinct dynamic behaviour as revealed by variable temperature NMR spectroscopy. The presence of weak LnCH(iPr) ß-agostic interactions, as indicated by Ln-N-C angles <105°, is corroborated by DFT calculations and NBO analysis.

15.
Dalton Trans ; 45(37): 14734-44, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27327422

RESUMO

Titanium(iv) complexes bearing an unsubstituted tridentate bis(phenolate) N-heterocyclic carbene (NHC) were synthesized and structurally identified. While sterically unencumbered NHC-Ti(iv) complexes bearing chloro and alkoxy co-ligands tend to dimerize in solution and in solid-state, the use of a bulky aryloxy as co-ligand favors the monomeric species. Upon activation by onium salts, all these complexes were found to be highly selective towards the copolymerization of cyclohexene oxide (CHO) with CO2 under mild conditions (PCO2 < 1 bar), albeit the sterically unencumbered NHC-Ti(iv) complexes are less stable and active than their structural analogues bearing bulkier substituents.

16.
Dalton Trans ; 44(41): 18101-10, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26418665

RESUMO

Trinuclear rare-earth metal methylidene complexes with a Ln3(µ3-CH2)(µ3-Me)(µ2-Me)3 structural motif were synthesized by applying three protocols. Polymeric [LuMe3]n (1-Lu) reacts with the sterically demanding amine H[NSiMe3(Ar)] (Ar = C6H3iPr2-2,6) in tetrahydrofuran via methane elimination to afford isolable monomeric [NSiMe3(Ar)]LuMe2(thf)2 (4-Lu). The formation of trinuclear rare-earth metal tetramethyl methylidene complexes [NSiMe3(Ar)]3Ln3(µ3-CH2)(µ3-Me)(µ2-Me)3(thf)3 (7-Ln; Ln = Y, Ho, Lu) via reaction of [LnMe3]n (1-Ln; Ln = Y, Ho, Lu) with H[NSiMe3(Ar)] is proposed to occur via an "intermediate" species of the type [NSiMe3(Ar)]LnMe2(thf)x and subsequent C-H bond activation. Applying Lappert's concept of Lewis base-induced methylaluminate cleavage, compounds [NSiMe3(Ar)]Ln(AlMe4)2 (5-Ln; Ln = Y, La, Nd, Ho) were converted into methylidene complexes 7-Ln (Ln = Y, Nd, Ho) in the presence of tetrahydrofuran. Similarly, tetramethylgallate complex [NSiMe3(Ar)]Y(GaMe4)2 (6-Y) could be employed as a synthesis precursor for 7-Y. The molecular composition of complexes 4-Ln, 5-Ln, 6-Y and 7-Ln was confirmed by elemental analyses, FTIR spectroscopy, (1)H and (13)C NMR spectroscopy (except for holmium derivatives) and single-crystal X-ray diffraction. The Tebbe-like reactivity of methylidene complex 7-Nd with 9-fluorenone was assessed affording oxo complex [NSiMe3(Ar)]3Nd3(µ3-O)(µ2-Me)4(thf)3 (8-Nd). The synthesis of 5-Ln yielded [NSiMe3(Ar)]2Ln(AlMe4) (9-Ln; Ln = La, Nd) as minor side-products, which could be obtained in moderate yields when homoleptic Ln(AlMe4)3 were treated with two equivalents of K[NSiMe3(Ar)].

17.
Chem Commun (Camb) ; 51(10): 1897-900, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25529550

RESUMO

An efficient Rh(I)-NHC-pincer catalyst for the highly regioselective Meinwald rearrangement of monoalkylated epoxides into methylketones under mild conditions is presented. The nucleophilic epoxide opening is assisted by Lewis acids.

18.
Dalton Trans ; 43(46): 17324-32, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25318830

RESUMO

Trivalent Eu[N(SiHMe2)2]3(THF)2 can easily be synthesized by applying a routine salt metathesis protocol (EuCl3(THF)2 and 3 equiv. of Li[N(SiHMe2)2] in n-hexane) which crystallizes isotypically to its analogues of the rare-earth metal series (space group P21/c). Transsilylamination of Eu[N(SiMe3)2]2(THF)2 with a slight excess of HN(SiHMe2)2 in n-hexane-THF yields the divalent trinuclear compound Eu{[µ-N(SiHMe2)2]2Eu[N(SiHMe2)2](THF)}2, the solid-state structure of which differs significantly from the samarium and ytterbium analogues by showing three unique molecules in the asymmetric unit of which one is related to the two others by an inversion. Using crude Eu[N(SiMe3)2]3 in transsilylamination reactions with HN(SiHMe2)2 in n-hexane afforded n-hexane-insoluble trivalent ate complexes {MEu[N(SiHMe2)2]4}n (M = Na, K) depending on the synthesis conditions of Eu[N(SiMe3)2]3. Performing the transsilylamination of Eu[N(SiMe3)2]3 with a large excess of HN(SiHMe2)2 at elevated temperatures gave reproducibly the donor-free, mixed-valent, trinuclear compound Eu(II){[µ-N(SiHMe2)2]Eu(III)[N(SiHMe2)2]3}2 in good yield.

19.
Chem Commun (Camb) ; 50(94): 14763-6, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25317924

RESUMO

Homoleptic cerium(IV) diisopropylamide was synthesized via oxidation of ate complex Ce(NiPr2)4Li(thf) with trityl chloride or hexachloroethane. Due to its ready accessibility, and high pKa value of the proligand HNiPr2, Ce(NiPr2)4 features a promising candidate for protonolysis reactions, as shown for the synthesis of dimeric cerium(IV) tetrakis(1,1,3,3-N,N,N',N'-tetramethylguanidinate).

20.
J Phys Chem A ; 118(43): 9951-9, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25271763

RESUMO

In a series of systematic studies, we have investigated the molecular motion in crystals of the glycine polymorphs and determined their thermodynamic functions from an analysis of multitemperature atomic displacement parameters (ADPs) combined with ONIOM calculation on 15-molecule clusters. The studies are aimed at providing insight into the factors governing the relative stabilities of the α-, ß-, and γ-polymorphs. This Article, the last in the series, focuses on the most stable polymorph, γ-glycine. Multitemperature diffraction data of the γ-glycine polymorph have been collected to 0.5 Å resolution between 10 and 300 K at two synchrotron beamlines, KEK Photon Factory and ID11 of the ESRF. The ADPs of γ-glycine from these sources differ significantly, as previously observed also for the other two polymorphs. A simple model of rigid body motion explains the ADPs from KEK and their temperature dependence. It provides lattice vibration frequencies that are in line with those from Raman spectroscopy. Together with the internal vibration frequencies from an ONIOM calculation, the thermodynamic functions are estimated using the Einstein, Debye, and Nernst-Lindemann models of heat capacity. The relative stabilities of the three polymorphs of glycine are discussed on the basis of the contributions to their free energies as obtained in this work and from various experimental and theoretical studies. The comparison shows that the free-energy differences are determined primarily by differences in lattice and zero-point vibrational energies.


Assuntos
Glicina/química , Polímeros/química , Cristalização , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA