Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Integr Bioinform ; 19(4)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073980

RESUMO

Core facilities have to offer technologies that best serve the needs of their users and provide them a competitive advantage in research. They have to set up and maintain instruments in the range of ten to a hundred, which produce large amounts of data and serve thousands of active projects and customers. Particular emphasis has to be given to the reproducibility of the results. More and more, the entire process from building the research hypothesis, conducting the experiments, doing the measurements, through the data explorations and analysis is solely driven by very few experts in various scientific fields. Still, the ability to perform the entire data exploration in real-time on a personal computer is often hampered by the heterogeneity of software, the data structure formats of the output, and the enormous data sizes. These impact the design and architecture of the implemented software stack. At the Functional Genomics Center Zurich (FGCZ), a joint state-of-the-art research and training facility of ETH Zurich and the University of Zurich, we have developed the B-Fabric system, which has served for more than a decade, an entire life sciences community with fundamental data science support. In this paper, we sketch how such a system can be used to glue together data (including metadata), computing infrastructures (clusters and clouds), and visualization software to support instant data exploration and visual analysis. We illustrate our in-daily life implemented approach using visualization applications of mass spectrometry data.


Assuntos
Gerenciamento de Dados , Software , Reprodutibilidade dos Testes , Genômica/métodos
2.
Source Code Biol Med ; 8(1): 3, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23311610

RESUMO

BACKGROUND: Data processing in the bioinformatics field often involves the handling of diverse software programs in one workflow. The field is lacking a set of standards for file formats so that files have to be processed in different ways in order to make them compatible to different analysis programs. The problem is that mass spectrometry vendors at most provide only closed-source Windows libraries to programmatically access their proprietary binary formats. This prohibits the creation of an efficient and unified tool that fits all processing needs of the users. Therefore, researchers are spending a significant amount of time using GUI-based conversion and processing programs. Besides the time needed for manual usage, such programs also can show long running times for processing, because most of them make use of only a single CPU. In particular, algorithms to enhance data quality, e.g. peak picking or deconvolution of spectra, add waiting time for the users. RESULTS: To automate these processing tasks and let them run continuously without user interaction, we developed the FGCZ Converter Control (FCC) at the Functional Genomics Center Zurich (FGCZ) core facility. The FCC is a rule-based system for automated file processing that reduces the operation of diverse programs to a single configuration task. Using filtering rules for raw data files, the parameters for all tasks can be custom-tailored to the needs of every single researcher and processing can run automatically and efficiently on any number of servers in parallel using all available CPU resources. CONCLUSIONS: FCC has been used intensively at FGCZ for processing more than hundred thousand mass spectrometry raw files so far. Since we know that many other research facilities have similar problems, we would like to report on our tool and the accompanying ideas for an efficient set-up for potential reuse.

3.
J Integr Bioinform ; 8(2): 159, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21772064

RESUMO

In this demo paper, we sketch B-Fabric, an all-in-one solution for management of life sciences data. B-Fabric has two major purposes. First, it is a system for the integrated management of experimental data and scientific annotations. Second, it is a system infrastructure supporting on-the fly coupling of user applications, and thus serving as extensible platform for fast-paced, cutting-edge, collaborative research.


Assuntos
Biologia Computacional/métodos , Software , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Interface Usuário-Computador
4.
EXS ; 97: 277-307, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17432272

RESUMO

Today's rapid development and broad application of high-throughput analytical technologies are transforming biological research and provide an amount of data and analytical opportunities to understand the fundamentals of biological processes undreamt of in past years. To fully exploit the potential of the large amount of data, scientists must be able to understand and interpret the information in an integrative manner. While the sheer data volume and heterogeneity of technical platforms within each discipline already poses a significant challenge, the heterogeneity of platforms and data formats across disciplines makes the integrative management, analysis, and interpretation of data a significantly more difficult task. This challenge thus lies at the heart of systems biology, which aims at a quantitative understanding of biological systems to the extent that systemic features can be predicted. In this chapter, we discuss several key issues that need to be addressed in order to put an integrated systems biology data analysis and mining within reach.


Assuntos
Biologia de Sistemas , Sistemas de Gerenciamento de Base de Dados , Plantas/genética , Proteômica , Biologia de Sistemas/normas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA