Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proteins ; 91(6): 831-846, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36645312

RESUMO

The AMP-activated protein kinase (AMPK) is known to be activated by the protein tyrosine phosphatase non-receptor type 12 (PTP-PEST) under hypoxic conditions. This activation is mediated by tyrosine dephosphorylation of the AMPKα subunit. However, the identity of the phosphotyrosine residues that PTP-PEST dephosphorylates remains unknown. In this study, we first predicted the structure of the complex of the AMPKα2 subunit and PTP-PEST catalytic domain using bioinformatics tools and further confirmed the stability of the complex using molecular dynamics simulations. Evaluation of the protein-protein interfaces indicated that residue Tyr232 is the most likely dephosphorylation site on AMPKα2. In addition, we explored the effect of phosphorylation of PTP-PEST residue Tyr64 on the stability of the complex. Phosphorylation of the highly conserved Tyr64, an interface residue, enhances the stability of the complex via the rearrangement of a network of electrostatic interactions in conjunction with conformational changes in the catalytic WPD loop. We generated a phosphomimetic (PTP-PEST-Y64D) mutant and used co-immunoprecipitation to study the effect of PTP-PEST phosphorylation on AMPKα2 binding. The mutant exhibited an increased affinity for AMPKα2 and corroborated the in-silico predictions. Together, our findings present a plausible structural basis of AMPK regulation by PTP-PEST and show how phosphorylation of PTP-PEST affects its interaction with AMPKα2.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Tirosina Fosfatase não Receptora Tipo 12 , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Tirosina Fosfatases/química , Fosforilação , Domínio Catalítico
2.
Proteins ; 90(5): 1179-1189, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35006623

RESUMO

Mutation of an invariant aspartate residue in the binding pocket of 14-3-3ζ isoform to alanine dramatically reduced phosphopeptide binding and induced opening of the binding pocket. Here we use extensive molecular dynamics simulations to understand the role of D124 residue in ligand binding. The simulations show that in the absence of phosphopeptide, the D124A mutation leads to binding pocket reorganization including widening up of the binding pocket at the major groove and repositioning of N173, a key residue that interacts with the main chain of phosphopeptide. These structural changes would interfere with the efficient binding of the peptide, corroborating the experimental observations. Both gain and loss of electrostatic interactions in the form of salt bridges strongly indicate a rearrangement of the network of interactions within the binding pocket. Limited proteolysis coupled mass spectrometry (lip-MS) of the apo and holo forms of wild type (WT) and mutant protein shows a peptide binding helix otherwise buried in the WT protein was particularly accessible to trypsin in the apo form of the mutant protein and the region was mapped to 158-186 amino acid residues of 14-3-3ζ. These results further confirm the dynamic nature of D124A mutant. Unlike other basic residues, the invariant D124 facilitates peptide binding by maintaining the geometry of interacting residues and by enforcing the structural integrity of amphipathic pocket.


Assuntos
Proteínas 14-3-3/química , Fosfopeptídeos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Humanos , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Mutação , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA