Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
2.
Int J Biol Macromol ; 279(Pt 3): 133245, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977045

RESUMO

Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.

3.
Cell ; 187(18): 4890-4904.e9, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013470

RESUMO

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Miosite , Receptores de Antígenos Quiméricos , Escleroderma Sistêmico , Humanos , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Miosite/terapia , Miosite/imunologia , Escleroderma Sistêmico/terapia , Escleroderma Sistêmico/imunologia , Imunoterapia Adotiva/métodos , Feminino , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
4.
Hum Cell ; 37(5): 1316-1324, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38913146

RESUMO

Chronic cough is a common disorder lasting more than 8 weeks and affecting all age groups. The evidence supporting the role of neutrophils in chronic cough pathology is based on many patients with chronic cough developing airway neutrophilia. How neutrophils influence the development of chronic cough is unknown. However, they are likely involved in multiple aspects of cough etiology, including promoting airway inflammation, airway remodeling, hyper-responsiveness, local neurogenic inflammation, and other possible mechanisms. Neutrophilic airway inflammation is also associated with refractory cough, poor control of underlying diseases (e.g., asthma), and insensitivity to cough suppressant therapy. The potential for targeting neutrophils in chronic cough needs exploration, including developing new drugs targeting one or more neutrophil-mediated pathways or altering the neutrophil phenotype to alleviate chronic cough. How the airway microbiome differs, plays a role, and interacts with neutrophils in different cough etiologies is poorly understood. Future studies should focus on understanding the relationship between the airway microbiome and neutrophils.


Assuntos
Tosse Crônica , Neutrófilos , Humanos , Remodelação das Vias Aéreas/imunologia , Asma/complicações , Asma/imunologia , Tosse Crônica/imunologia , Inflamação/imunologia , Microbiota , Neutrófilos/imunologia
5.
Adv Mater ; 36(35): e2404046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38842820

RESUMO

Cobalt carbide (Co2C) possesses high catalytic efficiency Fischer-Tropsch synthesis (FTS), while the products selectivity appears sensitive to crystallography geometry. Since the Anderson-Schulz-Flory (ASF) distribution in FTS is broken through fabricating facetted Co2C nanocrystals, yet the underlying mechanism of Co2C crystallization remains unclarified suffering from sophisticated catalyst composition involving promoter agents. Herein, the synthesis of high-purity single-crystal nanoprisms (Co2C-p) for highly efficient FTS is reported to lower olefins. Through comprehensive microstructure analysis, e.g., high-resolution TEM, in situ TEM and electron diffraction, as well as finite element simulation of gas flow field, for the first time the full roadmap of forming catalytic active cobalt carbides is disclosed, starting from reduction of Co3O4 precursor to CoO intermediate, then carburization into Co2C-s and subsequent ripening growth into Co2C-p. This gas-induced engineering of crystal phase provides a new synthesis strategy, with many new possibilities for precise design of metal-based catalyst for diverse catalytic applications.

6.
Sci Rep ; 14(1): 12598, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824219

RESUMO

To tackle the difficulty of extracting features from one-dimensional spectral signals using traditional spectral analysis, a metabolomics analysis method is proposed to locate two-dimensional correlated spectral feature bands and combine it with deep learning classification for wine origin traceability. Metabolomics analysis was performed on 180 wine samples from 6 different wine regions using UPLC-Q-TOF-MS. Indole, Sulfacetamide, and caffeine were selected as the main differential components. By analyzing the molecular structure of these components and referring to the main functional groups on the infrared spectrum, characteristic band regions with wavelengths in the range of 1000-1400 nm and 1500-1800 nm were selected. Draw two-dimensional correlation spectra (2D-COS) separately, generate synchronous correlation spectra and asynchronous correlation spectra, establish convolutional neural network (CNN) classification models, and achieve the purpose of wine origin traceability. The experimental results demonstrate that combining two segments of two-dimensional characteristic spectra determined by metabolomics screening with convolutional neural networks yields optimal classification results. This validates the effectiveness of using metabolomics screening to determine spectral feature regions in tracing wine origin. This approach effectively removes irrelevant variables while retaining crucial chemical information, enhancing spectral resolution. This integrated approach strengthens the classification model's understanding of samples, significantly increasing accuracy.


Assuntos
Aprendizado Profundo , Metabolômica , Vinho , Vinho/análise , Metabolômica/métodos , Redes Neurais de Computação , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos
7.
Heliyon ; 10(9): e30488, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737264

RESUMO

Salvia miltiorrhiza Bunge (SM) is a widespread herbal therapy for myocardial ischemia (MI). Nevertheless, the therapeutic signaling networks of SM extract on MI is yet unknown. Emerging evidences suggested that alterations in cardiac metabolite influences host metabolism and accelerates MI progression. Herein, we employed an isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model to confirm the pharmacological effects of SM extract (0.8, 0.9, 1.8 g/kg/day) via assessment of the histopathological alterations that occur within the heart tissue and associated cytokines; we also examined the underlying SM extract-mediated signaling networks using untargeted metabolomics. The results indicated that 25 compounds with a relative content higher than 1 % in SM aqueous extract were identified using LC-MS/MS analysis, which included salvianolic acid B, lithospermic acid, salvianolic acid A, and caffeic acid as main components. An in vivo experiment showed that pretreatment with SM extract attenuated ISO-induced myocardial injury, shown as decreased myocardial ischemic size, transformed electrocardiographic, histopathological, and serum biochemical aberrations, reduced levels of proinflammatory cytokines, inhibited oxidative stress (OS), and reversed the trepidations of the cardiac tissue metabolic profiles. Metabolomics analysis shows that the levels of 24 differential metabolites (DMs) approached the same value as controls after SM extract therapy, which were primarily involved in histidine; alanine, aspartate, and glutamate; glycerophospholipid; and glycine, serine, and threonine metabolisms through metabolic pathway analysis. Correlation analysis demonstrated that the levels of modulatory effects of SM extract on the inflammation and OS were related to alterations in endogenous metabolites. Overall, SM extract demonstrated significant cardioprotective effects in an ISO-induced AMI rat model, alleviating myocardial injury, inflammation and oxidative stress, with metabolomics analysis indicating potential therapeutic pathways for myocardial ischemia.

8.
Angew Chem Int Ed Engl ; 63(30): e202404861, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738502

RESUMO

Solid oxide electrolysis cells are prospective approaches for CO2 utilization but face significant challenges due to the sluggish reaction kinetics and poor stability of the fuel electrodes. Herein, we strategically addressed the long-standing trade-off phenomenon between enhanced exsolution and improved structural stability via topotactic ion exchange. The surface dynamic reconstruction of the MnOx/La0.7Sr0.3Cr0.9Ir0.1O3-δ (LSCIr) catalyst was visualized at the atomic scale. Compared with the Ir@LSCIr interface, the in situ self-assembled Ir@MnOx/LSCIr interface exhibited greater CO2 activation and easily removable carbonate intermediates, thus reached a 42 % improvement in CO2 electrolysis performance at 1.6 V. Furthermore, an improved CO2 electrolysis stability was achieved due to the uniformly wrapped MnOx shell of the Ir@MnOx/LSCIr cathode. Our approach enables a detailed understanding of the dynamic microstructure evolution at active interfaces and provides a roadmap for the rational design and evaluation of efficient metal/oxide catalysts for CO2 electrolysis.

9.
Cancer Lett ; 594: 216981, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38795761

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), a leading cause of cancer mortality, has a complex pathogenesis involving various immune cells, including B cells and their subpopulations. Despite emerging research on the role of these cells within the tumor microenvironment (TME), the detailed molecular interactions with tumor-infiltrating immune cells (TIICs) are not fully understood. METHODS: We applied CIBERSORT to quantify TIICs and naive B cells, which are prognostic for PDAC. Marker genes from scRNA-seq and modular genes from weighted gene co-expression network analysis (WGCNA) were integrated to identify naive B cell-related genes. A prognostic signature was constructed utilizing ten machine-learning algorithms, with validation in external cohorts. We further assessed the immune cell diversity, ESTIMATE scores, and immune checkpoint genes (ICGs) between patient groups stratified by risk to clarify the immune landscape in PDAC. RESULTS: Our analysis identified 994 naive B cell-related genes across single-cell and bulk transcriptomes, with 247 linked to overall survival. We developed a 12-gene prognostic signature using Lasso and plsRcox algorithms, which was confirmed by 10-fold cross-validation and showed robust predictive power in training and real-world cohorts. Notably, we observed substantial differences in immune infiltration between patients with high and low risk. CONCLUSION: Our study presents a robust prognostic signature that effectively maps the complex immune interactions in PDAC, emphasizing the critical function of naive B cells and suggesting new avenues for immunotherapeutic interventions. This signature has potential clinical applications in personalizing PDAC treatment, enhancing the understanding of immune dynamics, and guiding immunotherapy strategies.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Prognóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Linfócitos B/imunologia , Linfócitos do Interstício Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Transcriptoma , Perfilação da Expressão Gênica/métodos , Masculino , Feminino
10.
11.
Cell Rep Med ; 5(4): 101506, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593808

RESUMO

Prostate cancer (PCa) is a common malignancy in males. The pathology review of PCa is crucial for clinical decision-making, but traditional pathology review is labor intensive and subjective to some extent. Digital pathology and whole-slide imaging enable the application of artificial intelligence (AI) in pathology. This review highlights the success of AI in detecting and grading PCa, predicting patient outcomes, and identifying molecular subtypes. We propose that AI-based methods could collaborate with pathologists to reduce workload and assist clinicians in formulating treatment recommendations. We also introduce the general process and challenges in developing AI pathology models for PCa. Importantly, we summarize publicly available datasets and open-source codes to facilitate the utilization of existing data and the comparison of the performance of different models to improve future studies.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Masculino , Humanos , Tomada de Decisão Clínica
12.
J Am Chem Soc ; 146(17): 11955-11967, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640231

RESUMO

Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.

13.
Cancer Sci ; 115(6): 1979-1988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487949

RESUMO

Immune checkpoint inhibitors (ICIs) have shown promising efficacy in multiple cancers including biliary tract cancers (BTCs). However, the data focusing on the efficacy of ICIs in patients with gallbladder cancer (GBC) is still limited. In this study, we aim to assess the efficacy of ICIs in GBC and explore the clinicopathologic and molecular markers associated with ICI benefit. We retrospective analyzed 69 GBC patients who had received ICI therapy between January 2016 and December 2020. Tumor samples were obtained for genomic sequencing and immunohistochemical analysis. The median progression-free survival (PFS) and overall survival (OS) was 4.4 months and 8.5 months, respectively. Multivariate analysis indicated that alcohol intake history, carcinoma embryonic antigen (CEA) level ≥100 U/mL, and cutaneous immune-related adverse events (irAEs) were independent prognostic factors for PFS. CEA level ≥100 U/mL and cutaneous irAEs were independent prognostic factors for OS. The objective response rate and disease control rate (DCR) were 15.9% and 37.7%, respectively. Patients with cutaneous irAEs, high CD8+ T cell infiltrated or immune inflamed GBCs had higher DCR. Patients with high CD8+ T cell infiltrated or immune inflamed GBCs also had a notably improved prognosis. These results suggest that ICIs were effective in patients with GBC. High CEA level, cutaneous irAEs, high CD8+ T cell infiltration, and immune inflamed phenotype could be useful for predicting the efficacy of ICIs in GBC.


Assuntos
Neoplasias da Vesícula Biliar , Inibidores de Checkpoint Imunológico , Humanos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Prognóstico , Adulto , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Intervalo Livre de Progressão , Biomarcadores Tumorais , Resultado do Tratamento
14.
Data Brief ; 53: 110077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328281

RESUMO

Amygdalus species have considerable ecological and economic value, however, the phylogenetic relationships among Amygdalus remain controversy. In this study, we sequenced and assembled the chloroplast (cp) genomes of five Amygdalus species: Prunus communis, P. mongolica, P. pedunculata, P. triloba, and P. mira. We then conducted comparative genomic analyses and constructed their phylogenetic relationships. The genome length ranged from 157,870 to 158,451 bp, and 131 genes were annotated (86 protein-coding genes, 37 tRNAs, and 8 rRNAs). Additionally, 49-57 simple sequence repeats were detected, with most in the large single-copy region and with AT base preferences. Comparative genomic analyses revealed high similarities in structure, order, and gene content. However, we identified four highly divergent sequences: trnR-UCU-atpA, nbdhC-trnV-UAC, ycf4-cemA, and rpl32-trnL-UAG. The phylogenomic relationship analysis suggested that the Amygdalus species were grouped together, in which P. pedunculata, P. triloba, and Prunus tangutica were categorized into a branch, P. mongolica and Prunus davidiana were clustered a branch. This study provides an improved understanding of the genetic relationships among the Amygdalus and provides a basis for the development and utilization of Amygdalus resources.

15.
Cancer Gene Ther ; 31(5): 687-697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347129

RESUMO

SMARCA4-deficient undifferentiated thoracic tumor is extremely invasive. This tumor with poor prognosis is easily confused with SMARCA4-deficent non-small cell lung cancer or sarcoma. Standard and efficient treatment has not been established. In this review, we summarized the etiology, pathogenesis and diagnosis, reviewed current and proposed innovative strategies for treatment and improving prognosis. Immunotherapy, targeting tumor microenvironment and epigenetic regulator have improved the prognosis of cancer patients. We summarized clinicopathological features and immunotherapy strategies and analyzed the progression-free survival (PFS) and overall survival (OS) of patients with SMARCA4-UT who received immune checkpoint inhibitors (ICIs). In addition, we proposed the feasibility of epigenetic regulation in the treatment of SMARCA4-UT. To our knowledge, this is the first review that aims to explore innovative strategies for targeting tumor microenvironment and epigenetic regulation and identify potential benefit population for immunotherapy to improve the prognosis.


Assuntos
DNA Helicases , Epigênese Genética , Imunoterapia , Neoplasias Torácicas , Fatores de Transcrição , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Imunoterapia/métodos , DNA Helicases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Torácicas/genética , Neoplasias Torácicas/terapia , Neoplasias Torácicas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prognóstico
16.
Sheng Li Xue Bao ; 75(5): 714-726, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37909142

RESUMO

Preeclampsia and intrauterine growth restriction (IUGR) of the fetus are the two most common pregnancy complications worldwide, affecting 5%-10% of pregnant women. Preeclampsia is associated with significantly increased maternal and fetal morbidity and mortality. Hypoxia-induced uteroplacental dysfunction is now recognized as a key pathological factor in preeclampsia and IUGR. Reduced oxygen supply (hypoxia) disrupts mitochondrial and endoplasmic reticulum (ER) function. Hypoxia has been shown to alter mitochondrial reactive oxygen species (ROS) homeostasis and induce ER stress. Hypoxia during pregnancy is associated with excessive production of ROS in the placenta, leading to oxidative stress. Oxidative stress occurs in a number of human diseases, including high blood pressure during pregnancy. Studies have shown that uterine placental tissue/cells in preeclampsia and IUGR show high levels of oxidative stress, which plays an important role in the pathogenesis of both the complications. This review summarizes the role of hypoxia-induced mitochondrial oxidative stress and ER stress in the pathogenesis of preeclampsia/IUGR and discusses the potential therapeutic strategies targeting oxidative stress to treat both the pregnancy complications.


Assuntos
Pré-Eclâmpsia , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta , Retardo do Crescimento Fetal/etiologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/patologia , Espécies Reativas de Oxigênio , Hipóxia/patologia , Complicações na Gravidez/patologia , Estresse do Retículo Endoplasmático
17.
Front Med (Lausanne) ; 10: 1110907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020155

RESUMO

Objective: To prevent chronic brucellosis, this study analysed the changes in patient antibody titers, and the trajectories of biochemical indicators at different stages of brucellosis, identified relevant biomarkers, and explored risk factors affecting the prognosis of brucellosis patients. Methods: A prospective cohort study was conducted to follow 100 patients with acute brucellosis. Laboratory serological test results [taken with a serum (tube) agglutination test (SAT)] and biochemical parameters (liver function, renal function, and hematological system) were measured repeatedly at four-time points: 0 weeks-baseline survey, 6 weeks after the first treatment, 12 weeks after the second treatment, and 3 months after the third treatment. The changes in the antibody titres and biochemical parameters at each time point were analysed for trend changes. Results: One hundred patients with acute brucellosis were enrolled in this follow-up study, with 100% retention in follow-up. By the third follow-up, 21 patients had turned subacute and 11 had turned chronic. One-way repeated measures analysis of variance results showed statistically significant differences (p < 0.01) across the time points for the following five indicators: alanine aminotransferase, aspartate aminotransferase, total bilirubin, serum creatinine (SCr) and platelet count. The clinical symptoms of patients in the acute stage were mainly joint pain, fatigue, and fever, while those in the chronic stage complained primarily of joint pain and fatigue. The results of multivariate logistic analysis showed that joint pain [odds ratio (OR) = 3.652, 95% confidence interval (CI) =1.379-9.672], monoarticular pain (OR = 6.356, 95% CI = 4.660-8.669), elevated SCr (OR = 15.804, 95% CI = 1.644-151.966) and elevated haemoglobin (Hb) (OR = 1.219, 95% CI = 1.065-1.736) were risk factors for poor prognosis (not cured or chronic) in patients with brucellosis. Conclusion: The trajectory of changes in patient SAT posirates and antibody titers can be used to distinguish patients with chronic brucellosis. The brucellosis is preventable and treatable, and the standard treatment can be effective in reducing the clinical symptoms of affected patients. If patients are not treated in a timely manner, joint pain, monoarticular pain, and elevated SCr are risk factors for patients who are not cured. Therefore, the treatment cycle for these patients should be extended.

18.
Genes (Basel) ; 14(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895308

RESUMO

The production and quality of apricots in China is currently limited by the availability of germplasm resource characterizations, including identification at the species and cultivar level. To help address this issue, the complete chloroplast genomes of Prunus armeniaca L., P. sibirica L. and kernel consumption apricot were sequenced, characterized, and phylogenetically analyzed. The three chloroplast (cp) genomes ranged from 157,951 to 158,224 bp, and 131 genes were identified, including 86 protein-coding genes, 37 rRNAs, and 8 tRNAs. The GC content ranged from 36.70% to 36.75%. Of the 170 repetitive sequences detected, 42 were shared by all three species, and 53-57 simple sequence repeats were detected with AT base preferences. Comparative genomic analysis revealed high similarity in overall structure and gene content as well as seven variation hotspot regions, including psbA-trnK-UUU, rpoC1-rpoB, rpl32-trnL-UAG, trnK-rps16, ndhG-ndhI, ccsA-ndhD, and ndhF-trnL. Phylogenetic analysis showed that the three apricot species clustered into one group, and the genetic relationship between P. armeniaca and kernel consumption apricot was the closest. The results of this study provide a theoretical basis for further research on the genetic diversity of apricots and the development and utilization of molecular markers for the genetic engineering and breeding of apricots.


Assuntos
Genoma de Cloroplastos , Prunus armeniaca , Prunus armeniaca/genética , Genômica/métodos , Filogenia , Melhoramento Vegetal
19.
Front Pharmacol ; 14: 1252567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795022

RESUMO

Malignant melanoma (MM) is the most common and deadliest type of skin cancer and is associated with high mortality rates across all races and ethnicities. Although present treatment options combined with surgery provide short-term clinical benefit in patients and early diagnosis of non-metastatic MM significantly increases the probability of survival, no efficacious treatments are available for MM. The etiology and pathogenesis of MM are complex. Acquired drug resistance is associated with a pool prognosis in patients with advanced-stage MM. Thus, these patients require new therapeutic strategies to improve their treatment response and prognosis. Multiple studies have revealed that ferroptosis, a non-apoptotic form of regulated cell death (RCD) characterized by iron dependant lipid peroxidation, can prevent the development of MM. Recent studies have indicated that targeting ferroptosis is a promising treatment strategy for MM. This review article summarizes the core mechanisms underlying the development of ferroptosis in MM cells and its potential role as a therapeutic target in MM. We emphasize the emerging types of small molecules inducing ferroptosis pathways by boosting the antitumor activity of BRAFi and immunotherapy and uncover their beneficial effects to treat MM. We also summarize the application of nanosensitizer-mediated unique dynamic therapeutic strategies and ferroptosis-based nanodrug targeting strategies as therapeutic options for MM. This review suggests that pharmacological induction of ferroptosis may be a potential therapeutic target for MM.

20.
Natl Sci Rev ; 10(9): nwad078, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565207

RESUMO

Solid oxide electrolysis cells provide a practical solution for the direct conversion of CO2 to other chemicals (i.e. CO), however, an in-depth mechanistic understanding of the dynamic reconstruction of active sites for perovskite cathodes during CO2 electrolysis remains a great challenge. Herein, we identify that iridium-doped Sr2Fe1.45Ir0.05Mo0.5O6-δ (SFIrM) perovskite displays a dynamic electrochemical reconstruction feature during CO2 electrolysis with abundant exsolution of highly dispersed IrFe alloy nanoparticles on the SFIrM surface. The in situ reconstructed IrFe@SFIrM interfaces deliver a current density of 1.46 A cm-2 while maintaining over 99% CO Faradaic efficiency, representing a 25.8% improvement compared with the Sr2Fe1.5Mo0.5O6-δ counterpart. In situ electrochemical spectroscopy measurements and density functional theory calculations suggest that the improved CO2 electrolysis activity originates from the facilitated formation of carbonate intermediates at the IrFe@SFIrM interfaces. Our work may open the possibility of using an in situ electrochemical poling method for CO2 electrolysis in practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA