Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543664

RESUMO

3,4-Dichloroaniline (34DCA), a major metabolite of phenylurea herbicides, causes environmental contamination owing to its toxicity and recalcitrant properties. Acinetobacter soli strain GFJ2, isolated from soil potentially contaminated with herbicides, can degrade 34DCA. This study aimed to identify and characterize the 34DCA degradation gene cluster responsible for the conversion of 34DCA to 4,5-dichlorocatechol in the strain GFJ2. Genome analysis revealed one chromosome and seven plasmids in GFJ2, comprising 21, 75, and 3309 copies of rRNA, 75 tRNA, and protein-encoding genes, respectively. A gene cluster responsible for 34DCA degradation was identified, comprising dcdA, dcdB, and dcdC, which encode dioxygenase, flavin reductase, and aldehyde dehydrogenase, respectively. Transcriptional analysis indicated that this gene cluster is constructed as an operon, induced during 34DCA utilization. The heterologous expression of dcdA and dcdB in Escherichia coli confirmed their activity in degrading 34DCA to an intermediate metabolite, converted to 4,5-dichlorocatechol via a reaction involving the dcdC gene product, suggesting their involvement in 34DCA conversion to 4,5-dichlorocatechol. Deletion mutants of dcdA and dcdB lost 34DCA degradation ability, confirming their importance in 34DCA utilization in GFJ2. This study provides insights into the genetic mechanisms of 34DCA degradation by GFJ2, with potential applications in the bioremediation of environments contaminated by phenylurea herbicides.

2.
Biotechnol Rep (Amst) ; 22: e00332, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31011550

RESUMO

Gram-negative natural rubber-degrader, Rhizobacter gummiphilus NS21T, which was isolated from soil in the botanical garden in Japan, is a newly proposed species of genus of Rhizobacter. It has been reported that the latA1 gene is involved in the natural rubber degradation in this strain. To gain novel insights into natural rubber degradation pathway, the complete genome sequence of this strain was determined. The genome of strain NS21T consists of 6,398,096 bp of circular chromosome (GenBank accession number CP015118.1) with G + C content of 69.72%. The genome contains 5687 protein-coding and 68 RNA genes. Among the predicted genes, 4810 genes were categorized as functional COGs. Homology search revealed that existence of latA1 homologous gene (latA2) in this genome. Quantitative reverse-transcription-PCR and deletion analyses indicated that natural rubber degradation of this strain requires latA2 as well as latA1.

3.
J Biosci Bioeng ; 123(4): 412-418, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28065456

RESUMO

A rubber-degrading bacterial consortium named H2DA was obtained from an enrichment culture with natural rubber latex and rubber-processing factory waste in Vietnam. Gel permeation chromatography analysis revealed that only the strain NVL3 degraded synthetic poly(cis-1,4-isoprene) into low-molecular-weight intermediates among the three strains found in the H2DA. The 16S-rRNA gene sequence of NVL3 showed the highest identity with that of Nocardia farcinica DSM 43665T. NVL3 accumulated aldehyde intermediates from synthetic poly(cis-1,4-isoprene) on a rubber-overlay plate as indicated by Schiff's staining. NVL3 also degraded deproteinized natural rubber into low-molecular-weight aldehyde intermediates. A latex-clearing protein (lcp) gene ortholog was identified within the genome sequence of NVL3, and it showed a moderate amino-acid identity (54-75%) with the lcp genes from previously reported rubber degraders. The heterologous expression of the NVL3 lcp in Escherichia coli BL21(DE3) allowed us to purify the 46.8-kDa His-tagged lcp gene product (His-Lcp). His-Lcp degraded synthetic poly(cis-1,4-isoprene) and accumulated aldehyde intermediates from deproteinized natural rubber suggesting the functional expression of the lcp gene from a Nocardia degrader in E. coli. Quantitative reverse transcription PCR analysis indicated the strong transcriptional induction of the lcp gene in NVL3 in the presence of synthetic poly(cis-1,4-isoprene). These results suggest the involvement of the lcp gene in rubber degradation in NVL3.


Assuntos
Genes Bacterianos/genética , Indústrias , Nocardia/genética , Nocardia/metabolismo , Borracha/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Sequência de Bases , Escherichia coli/genética , Hemiterpenos/química , Hemiterpenos/metabolismo , Látex/química , Látex/metabolismo , Nocardia/classificação , Borracha/química , Vietnã
4.
Biosci Biotechnol Biochem ; 81(3): 614-620, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28110615

RESUMO

A Gram-negative rubber-degrading bacterium, Rhizobacter gummiphilus NS21 grew and produced aldehyde metabolites on a deproteinized natural rubber (DPNR)-overlay agar medium forming a clearing zone. A transposon-insertion mutant, which had lost the ability to degrade DPNR, was isolated to identify the rubber degradation genes. Sequencing analysis indicated that the transposon was inserted into a putative oxygenase gene, latA. The deduced amino acid sequence of latA has 36% identity with that of roxA, which encodes a rubber oxygenase of Xanthomonas sp. strain 35Y. Phylogenetic analysis revealed that LatA constitutes a distinct group from RoxA. Heterologous expression in a Methylibium host and deletion analysis of latA indicated that the latA product is responsible for the depolymerization of DPNR. The quantitative reverse transcription-PCR analysis indicated that the transcription of latA is induced during the growth on DPNR. These results strongly suggest that latA is directly involved in the degradation of rubber in NS21.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderiaceae/genética , Oxigenases/genética , Borracha/metabolismo , Betaproteobacteria/genética , Biodegradação Ambiental , Burkholderiaceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Oxigenases/metabolismo , Filogenia
5.
J Gen Appl Microbiol ; 63(1): 1-10, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-27989998

RESUMO

Pseudomonas putida is well-known for degradation activities for a variety of compounds and its infections have been reported. Thus, P. putida includes both clinical and nonclinical isolates. To date, no reports have examined the phylogenetic relationship between clinical and nonclinical isolates of the P. putida group. In this study, fifty-nine strains of P. putida group containing twenty-six clinical, and thirty-three nonclinical, isolates, were subjected to phylogenetic and taxonomic analyses based on 16S rRNA gene sequences and nine housekeeping gene sequences, including argS, dnaN, dnaQ, era, gltA, gyrB, ppnK, rpoB, and rpoD, to obtain insights into the diversity of species in this group. More than 97.6% similarity was observed among the 16S rRNA gene sequences of all the strains examined, indicating that the resolution of 16S rRNA gene sequences is inadequate. Phylogenetic analysis based on the individual housekeeping genes listed above improved the resolution of the phylogenetic trees, which are different from each other. Multilocus sequence analysis (MLSA) based on the concatenated sequences of the nine genes significantly improved the resolution of the phylogenetic tree, and yielded approximately the same results as average nucleotide identity (ANI) analysis, suggesting its high reliability. ANI analysis classified the fifty-nine strains into twenty-six species containing seventeen singletons and nine strain clusters based on the 95% threshold. It also indicated the mixed distribution of clinical and nonclinical isolates in the six clusters, suggesting that the genomic difference between clinical and nonclinical isolates of the P. putida group is subtle. The P. putida type strain NBRC 14164T is a singleton that is independently located from the P. putida strains distributed among the six clusters, suggesting that the classification of these strains and the differentiation of species in the P. putida group should be re-examined. This study greatly expands insights into the phylogenetic diversity of the P. putida group.


Assuntos
Variação Genética , Filogenia , Pseudomonas putida/classificação , Pseudomonas putida/genética , Análise por Conglomerados , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microbiologia Ambiental , Genes Essenciais , Genótipo , Tipagem de Sequências Multilocus , Infecções por Pseudomonas/microbiologia , Pseudomonas putida/isolamento & purificação , RNA Ribossômico 16S/genética
6.
DNA Res ; 23(6): 581-599, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27581378

RESUMO

γ-Hexachlorocyclohexane (γ-HCH) is a recalcitrant man-made chlorinated pesticide. Here, the complete genome sequences of four γ-HCH-degrading sphingomonad strains, which are most unlikely to have been derived from one ancestral γ-HCH degrader, were compared. Together with several experimental data, we showed that (i) all the four strains carry almost identical linA to linE genes for the conversion of γ-HCH to maleylacetate (designated "specific" lin genes), (ii) considerably different genes are used for the metabolism of maleylacetate in one of the four strains, and (iii) the linKLMN genes for the putative ABC transporter necessary for γ-HCH utilization exhibit structural divergence, which reflects the phylogenetic relationship of their hosts. Replicon organization and location of the lin genes in the four genomes are significantly different with one another, and that most of the specific lin genes are located on multiple sphingomonad-unique plasmids. Copies of IS6100, the most abundant insertion sequence in the four strains, are often located in close proximity to the specific lin genes. Analysis of the footprints of target duplication upon IS6100 transposition and the experimental detection of IS6100 transposition strongly suggested that the IS6100 transposition has caused dynamic genome rearrangements and the diversification of lin-flanking regions in the four strains.


Assuntos
Evolução Molecular , Genoma Bacteriano , Hexaclorocicloexano/metabolismo , Praguicidas/metabolismo , Sphingomonas/genética , Biodegradação Ambiental , Alinhamento de Sequência , Sphingomonas/metabolismo
7.
Genome Announc ; 4(3)2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27340052

RESUMO

Comamonas thiooxydans strain PHE2-6 (NBRC 110656), which was isolated from a trichloroethene-contaminated site in Japan, utilizes phenol as a sole source of carbon and cometabolizes cis- and trans-dichloroethenes. We report here the draft genome sequence of this strain, containing 5,309,680 bp, with 60.6% G+C content.

8.
Genome Announc ; 4(2)2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056230

RESUMO

Here, we report the complete genome sequence of a γ-hexachlorocyclohexane (γ-HCH)-degrading bacterium,Sphingobiumsp. strain MI1205. The genome of MI1205 consists of two chromosomes and four plasmids with sizes of 33 to 292 kb. All thelingenes for γ-HCH metabolism are dispersed on the four plasmids.

9.
Genome Announc ; 4(2)2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26941158

RESUMO

Cupriavidus necator strain PHE3-6 grows on phenol as a sole carbon source and cometabolizes cis- and trans-dichloroethenes and trichloroethene. Here, we report the draft genome sequence of PHE3-6, which provides insights into the degradation system of phenol and chlorinated ethenes.

10.
Genome Announc ; 2(1)2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24482516

RESUMO

Pseudomonas sp. strain TKP does not degrade γ-hexachlorocyclohexane (γ-HCH), but it persistently coexists with the γ-HCH-degrading Sphingobium sp. strain TKS in a mixed culture enriched by γ-HCH. Here, we report the complete genome sequence of strain TKP, which consists of one circular chromosome with a size of 7 Mb.

11.
Biosci Biotechnol Biochem ; 75(3): 466-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21389627

RESUMO

A γ-hexachlorocyclohexane (HCH)-degrading bacterium, Sphingomonas sp. MM-1, was isolated from soil contaminated with HCH isomers. Cultivation of MM-1 in the presence of γ-HCH led to the detection of five γ-HCH metabolites, γ-pentachlorocyclohexene, 2,5-dichloro-2,5-cyclohexadiene-1,4-diol, 2,5-dichlorohydroquinone, 1,2,4-trichlorobenzene, and 2,5-dichlorophenol, strongly suggesting that MM-1 has the lin genes for γ-HCH degradation originally identified in the well-studied γ-HCH-degrading strain Sphingobium japonicum UT26. Southern blot, PCR amplification, and sequencing analyses indicated that MM-1 has seven lin genes for the conversion of γ-HCH to ß-ketoadipate (six structural genes, linA to linF, and one regulatory gene, linR). MM-1 carried four plasmids, of 200, 50, 40, and 30 kb. Southern blot analysis revealed that all seven lin genes were dispersed across three of the four plasmids, and that IS6100, often found close to the lin genes, was present on all four plasmids.


Assuntos
Hexaclorocicloexano/metabolismo , Plasmídeos/genética , Sphingomonas/metabolismo , Adipatos/metabolismo , Sequência de Bases , Biodegradação Ambiental , Southern Blotting , Clorobenzenos/metabolismo , Clorofenóis/metabolismo , Clonagem Molecular , Cicloexanóis/metabolismo , Cicloexenos/metabolismo , Elementos de DNA Transponíveis , Genes Bacterianos , Hidroquinonas/metabolismo , Dados de Sequência Molecular , Plasmídeos/análise , Plasmídeos/química , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Sphingomonas/genética , Sphingomonas/isolamento & purificação
12.
J Bacteriol ; 192(17): 4337-47, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20581207

RESUMO

To understand the mechanisms for structural diversification of Pseudomonas-derived toluene-catabolic (TOL) plasmids, the complete sequence of a self-transmissible plasmid pDK1 with a size of 128,921 bp from Pseudomonas putida HS1 was determined. Comparative analysis revealed that (i) pDK1 consisted of a 75.6-kb IncP-7 plasmid backbone and 53.2-kb accessory gene segments that were bounded by transposon-associated regions, (ii) the genes for conjugative transfer of pDK1 were highly similar to those of MOB(H) group of mobilizable plasmids, and (iii) the toluene-catabolic (xyl) gene clusters of pDK1 were derived through homologous recombination, transposition, and site-specific recombination from the xyl gene clusters homologous to another TOL plasmid, pWW53. The minireplicons of pDK1 and its related IncP-7 plasmids, pWW53 and pCAR1, that contain replication and partition genes were maintained in all of six Pseudomonas strains tested, but not in alpha- or betaproteobacterial strains. The recipient host range of conjugative transfer of pDK1 was, however, limited to two Pseudomonas strains. These results indicate that IncP-7 plasmids are essentially narrow-host-range and self-transmissible plasmids that encode MOB(H) group-related transfer functions and that the host range of IncP-7-specified conjugative transfer was, unlike the situation in other well-known plasmids, narrower than that of its replication.


Assuntos
Evolução Molecular , Plasmídeos/genética , Pseudomonas putida/genética , Tolueno/metabolismo , Proteínas de Bactérias/genética , Conjugação Genética , Elementos de DNA Transponíveis/genética , Dados de Sequência Molecular , Família Multigênica , Pseudomonas putida/metabolismo , Recombinação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA