Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 22(4): 605-614, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27431297

RESUMO

The mammalian ShcA adaptor protein p66Shc is a key regulator of mitochondrial reactive oxygen species (ROS) production and has previously been shown to mediate amyloid ß (Aß)-peptide-induced cytotoxicity in vitro. Moreover, p66Shc is involved in mammalian longevity and lifespan determination as revealed in the p66Shc knockout mice, which are characterized by a 30% prolonged lifespan, lower ROS levels and protection from age-related impairment of physical and cognitive performance. In this study, we hypothesized a role for p66Shc in Aß-induced toxicity in vivo and investigated the effects of genetic p66Shc deletion in the PSAPP transgenic mice, an established Alzheimer's disease mouse model of ß-amyloidosis. p66Shc-ablated PSAPP mice were characterized by an improved survival and a complete rescue of Aß-induced cognitive deficits at the age of 15 months. Importantly, these beneficial effects on survival and cognitive performance were independent of Aß levels and amyloid plaque deposition, but were associated with improved brain mitochondrial respiration, a reversal of mitochondrial complex I dysfunction, restored adenosine triphosphate production and reduced ROS levels. The results of this study support a role for p66Shc in Aß-related mitochondrial dysfunction and oxidative damage in vivo, and suggest that p66Shc ablation may be a promising novel therapeutic strategy against Aß-induced toxicity and cognitive impairment.


Assuntos
Disfunção Cognitiva/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Técnicas de Ablação/métodos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição/fisiologia , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Oxirredução , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
2.
Cell Death Dis ; 6: e1791, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26086964

RESUMO

Synaptic loss is one of the major features of Alzheimer's disease (AD) and correlates with the degree of dementia. N-methyl-D-aspartate receptors (NMDARs) have been shown to mediate downstream effects of the ß-amyloid peptide (Aß) in AD models. NMDARs can trigger intracellular cascades via Ca(2+) entry, however, also Ca(2+)-independent (metabotropic) functions of NMDARs have been described. We aimed to determine whether ionotropic or metabotropic NMDAR signaling is required for the induction of synaptic loss by Aß. We show that endogenous Aß as well as exogenously added synthetic Aß oligomers induced dendritic spine loss and reductions in pre- and postsynaptic protein levels in hippocampal slice cultures. Synaptic alterations were mitigated by blocking glutamate binding to NMDARs using NMDAR antagonist APV, but not by preventing ion flux with Ca(2+) chelator BAPTA or open-channel blockers MK-801 or memantine. Aß increased the activity of p38 MAPK, a kinase involved in long-term depression and inhibition of p38 MAPK abolished the loss of dendritic spines. Aß-induced increase of p38 MAPK activity was prevented by APV but not by BAPTA, MK-801 or memantine treatment highlighting the role of glutamate binding to NMDARs but not Ca(2+) flux for synaptic degeneration by Aß. We further show that treatment with the G protein inhibitor pertussis toxin (PTX) did not prevent dendritic spine loss in the presence of Aß oligomers. Our data suggest that Aß induces the activation of p38 MAPK and subsequent synaptic loss through Ca(2+) flux- and G protein-independent mechanisms.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Espinhas Dendríticas/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doença de Alzheimer/patologia , Animais , Maleato de Dizocilpina/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Ácido Glutâmico/metabolismo , Hipocampo/patologia , Memantina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Toxina Pertussis/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais , Valina/análogos & derivados , Valina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
3.
Cell Death Dis ; 4: e608, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23618906

RESUMO

Aggregates of amyloid-beta (Aß) and tau are hallmarks of Alzheimer's disease (AD) leading to neurodegeneration and synaptic loss. While increasing evidence suggests that inhibition of N-methyl-D-aspartate receptors (NMDARs) may mitigate certain aspects of AD neuropathology, the precise role of different NMDAR subtypes for Aß- and tau-mediated toxicity remains to be elucidated. Using mouse organotypic hippocampal slice cultures from arcAß transgenic mice combined with Sindbis virus-mediated expression of human wild-type tau protein (hTau), we show that Aß caused dendritic spine loss independently of tau. However, the presence of hTau was required for Aß-induced cell death accompanied by increased hTau phosphorylation. Inhibition of NR2B-containing NMDARs abolished Aß-induced hTau phosphorylation and toxicity by preventing GSK-3ß activation but did not affect dendritic spine loss. Inversely, NR2A-containing NMDAR inhibition as well as NR2A-subunit knockout diminished dendritic spine loss but not the Aß effect on hTau. Activation of extrasynaptic NMDARs in primary neurons caused degeneration of hTau-expressing neurons, which could be prevented by NR2B-NMDAR inhibition but not by NR2A knockout. Furthermore, caspase-3 activity was increased in arcAß transgenic cultures. Activity was reduced by NR2A knockout but not by NR2B inhibition. Accordingly, caspase-3 inhibition abolished spine loss but not hTau-dependent toxicity in arcAß transgenic slice cultures. Our data show that Aß induces dendritic spine loss via a pathway involving NR2A-containing NMDARs and active caspase-3 whereas activation of eSyn NR2B-containing NMDARs is required for hTau-dependent neurodegeneration, independent of caspase-3.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Apoptose , Caspase 3/metabolismo , Células Cultivadas , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/citologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/citologia , Fosforilação , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Mol Psychiatry ; 18(3): 358-68, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22688190

RESUMO

Serum antibodies against amyloid-ß peptide (Aß) in humans with or without diagnosis of Alzheimer's disease (AD) indicate the possibility of immune responses against brain antigens. In an unbiased screening for antibodies directed against brain proteins, we found in AD patients high serum levels of antibodies against the neuronal cytoskeletal protein ankyrin G (ankG); these correlated with slower rates of cognitive decline. Neuronal expression of ankG was higher in AD brains than in nondemented age-matched healthy control subjects. AnkG was present in exosomal vesicles, and it accumulated in ß-amyloid plaques. Active immunization with ankG of arcAß transgenic mice reduced brain ß-amyloid pathology and increased brain levels of soluble Aß(42). AnkG immunization induced a reduction in ß-amyloid pathology, also in Swedish transgenic mice(.) Anti-ankG monoclonal antibodies reduced Aß-induced loss of dendritic spines in hippocampal ArcAß organotypic cultures. Together, these data established a role for ankG in the human adaptive immune response against resident brain proteins, and they show that ankG immunization reduces brain ß-amyloid and its related neuropathology.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/prevenção & controle , Anquirinas/imunologia , Encéfalo/patologia , Vacinação , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Anquirinas/metabolismo , Anticorpos/sangue , Anticorpos Monoclonais/farmacologia , Encéfalo/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo
5.
Transl Psychiatry ; 2: e183, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23149447

RESUMO

Pathogenic amyloid-ß peptide precursor (APP) mutations clustered around position 693 of APP-position 22 of the Aß sequence--are commonly associated with congophilic amyloid angiopathy (CAA) and intracerebral hemorrhages. In contrast, the Osaka (E693Δ) intra-Aß APP mutation shows a recessive pattern of inheritance that leads to AD-like dementia despite low brain amyloid on in vivo positron emission tomography imaging. Here, we investigated the effects of the Osaka APP mutation on Aß accumulation and deposition in vivo using a newly generated APP transgenic mouse model (E22ΔAß) expressing the Osaka mutation together with the Swedish (K670N/M671L) double mutation. E22ΔAß mice exhibited reduced α-processing of APP and early accumulation of intraneuronal fibrillar Aß oligomers associated with cognitive deficits. In line with our in vitro findings that recombinant E22Δ-mutated Aß peptides form amyloid fibrils, aged E22ΔAß mice showed extracellular CAA deposits in leptomeningeal cerebellar and cortical vessels. In vitro results from thioflavin T aggregation assays with recombinant Aß peptides revealed a yet unknown antiamyloidogenic property of the E693Δ mutation in the heterozygous state and an inhibitory effect of E22Δ Aß42 on E22Δ Aß40 fibrillogenesis. Moreover, E22Δ Aß42 showed a unique aggregation kinetics lacking exponential fibril growth and poor seeding effects on wild-type Aß aggregation. These results provide a possible explanation for the recessive trait of inheritance of the Osaka APP mutation and the apparent lack of amyloid deposition in E693Δ mutation carriers.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo , Placa Amiloide , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Mutação , Placa Amiloide/metabolismo , Placa Amiloide/patologia
6.
Curr Alzheimer Res ; 6(3): 261-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19519307

RESUMO

Since their first description by Ramon y Cajal at the end of the 19th century, dendritic spines have been proposed as important sites of neuronal contacts and it has been suggested that changes in the activity of neurons directly affect spine morphology. In fact, since then it has been shown that about 90% of excitatory synapses end on spines. Recent data indicate that spines are highly dynamic structures and that spine shape correlates with the strength of synaptic transmission. Furthermore, several mental disorders including Alzheimer's disease (AD) are associated with spine pathology suggesting that spine alterations play a central role in mental deficits. The aim of this review is to provide an overview about the current knowledge on spine morphology and function as well as about different experimental models to analyze spine changes and dynamics. The second part concentrates on disease-relevant factors that are associated with AD and which lead to spine alterations. In particular, data that provide evidence that Abeta oligomers or fibrillar Abeta deposits influence spine morphology and function will be presented and the contribution of tau pathology will be discussed. The review ends with the discussion of potential mechanisms how disease-relevant factors influence dendritic spines and whether and how spine changes could be therapeutically suppressed or reversed.


Assuntos
Doença de Alzheimer/patologia , Espinhas Dendríticas/patologia , Neurônios/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Modelos Biológicos , Neurônios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA