Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 1(3): 67, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28812743

RESUMO

Climate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species' abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.

3.
Parasitol Res ; 114(3): 1051-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579658

RESUMO

Today, international travel and global freight transportation are increasing and have a direct influence on the introduction and establishment of non-native mosquito species as well as on the spread of arthropod (mosquito)-borne diseases inside Europe. One of the mosquito species that has become invasive in many areas is the Asian rock pool or bush mosquito Ochlerotatus japonicus japonicus (synonyms: Aedes japonicus japonicus or Hulecoeteomyia japonica japonica). This species was detected in Germany in 2008 for the first time. Until today, three different Oc. j. japonicus populations have been documented. Laboratory studies have shown that Oc. j. japonicus can act as a vector for a variety of disease agents. Thus, the knowledge on its current distribution is essential for different measurements. In the present study, ecological niche models were used to estimate the potential distribution of Oc. j. japonicus in Germany. The aim was to detect areas within Germany that could potentially function as habitats for this species. According to our model, areas in western, southern, and central Germany offer suitable conditions for the mosquito and may therefore be at risk for an invasion of the species. We strongly suggest that those areas should be monitored more intensively in the future. For this purpose, it would also be essential to search for possible dispersal routes as well as for natural barriers.


Assuntos
Insetos Vetores/fisiologia , Ochlerotatus/fisiologia , Distribuição Animal , Animais , Arbovírus , Ecossistema , Alemanha , Modelos Biológicos
4.
Oecologia ; 174(3): 739-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24197990

RESUMO

Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation--due to a longer growing period--and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.


Assuntos
Aclimatação , Ambrosia/fisiologia , Congelamento , Germinação , Espécies Introduzidas , Plântula/fisiologia , Biomassa , Europa (Continente) , América do Norte , Sementes , Temperatura
5.
PLoS One ; 8(7): e67909, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894290

RESUMO

Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat - epizoochory and dispersal by animals after feeding and digestion - endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species.


Assuntos
Mudança Climática , Clima , Plantas , Animais , Dinâmica Populacional , Dispersão de Sementes/fisiologia , Vento
6.
Proc Biol Sci ; 278(1725): 3644-53, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21543356

RESUMO

The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role.


Assuntos
Ecossistema , Camada de Gelo , Plantas , Mudança Climática , Europa (Continente) , Geografia , Modelos Teóricos , Dinâmica Populacional , Análise de Regressão , Especificidade da Espécie
7.
Am Nat ; 177(5): 668-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21508612

RESUMO

Alien species can be a major threat to ecological communities, but we do not know why some community types allow the entry of many more alien species than do others. Here, for the first time, we suggest that evolutionary diversity inherent to the constituent species of a community may determine its present receptiveness to alien species. Using recent large databases from observational studies, we find robust evidence that assemblage of plant community types from few phylogenetic lineages (in plots without aliens) corresponds to higher receptiveness to aliens. Establishment of aliens in phylogenetically poor communities corresponds to increased phylogenetic dispersion of recipient communities and to coexistence with rather than replacement of natives. This coexistence between natives and distantly related aliens in recipient communities of low phylogenetic dispersion may reflect patterns of trait assembly. In communities without aliens, low phylogenetic dispersion corresponds to increased dispersion of most traits, and establishment of aliens corresponds to increased trait concentration. We conclude that if quantified across the tree of life, high biodiversity correlates with decreasing receptiveness to aliens. Low phylogenetic biodiversity, in contrast, facilitates coexistence between natives and aliens even if they share similar trait states.


Assuntos
Biodiversidade , Espécies Introduzidas , Plantas , Meio Ambiente , Países Baixos , Filogenia , Filogeografia , Análise de Regressão
8.
Ecol Lett ; 11(8): 809-19, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18445034

RESUMO

Functional diversity within communities may influence ecosystem functioning, but which factors drive functional diversity? We hypothesize that communities assembled from many phylogenetic lineages show large functional diversity if assembly is random, but low functional diversity if assembly is controlled by interactions between species within lineages. We combined > 9000 descriptions of Dutch plant communities, a species-level phylogeny, and information on 16 functional traits (including eight dispersal traits). We found that all traits were conserved within lineages, but nevertheless communities assembled from many lineages showed a smaller variation in trait-states of most traits (including dispersal traits) than communities assembled from few lineages. Hence, within lineages, species are not randomly assembled into communities, contradicting Neutral Theory. In fact, we find evidence for evolutionary divergence in trait-states as well as present-day mutual exclusion among related, similar species, suggesting that functional diversity of communities increased due to past and present interactions between species within lineages.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Filogenia , Plantas/genética , Plantas/metabolismo , Modelos Biológicos , Especificidade da Espécie
9.
Oecologia ; 153(2): 331-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17516091

RESUMO

The transport of diaspores on animal hairs depends on the ability of a diaspore to attach to the hair and to be retained in it over longer periods of time. Whereas several studies of diaspore retention on animal hairs have been conducted recently, the process of diaspore attachment to the hair has not yet been studied systematically. We describe a new method to quantify the attachment potential (AtP) of plant diaspores. Attachment potential was measured as the proportion of diaspores of a given species that attached to pieces of an animal coat in a standardised experiment. The experiment was conducted for 58 plant species (herbs and grasses) and three different coat types: sheep wool, cattle and roe deer hair. Attachment potentials differed widely between the three coat types, but also between plant species. We found diaspore surface structure (a quantitative measure of diaspore morphology) and diaspore exposition (describing the morphology of the infructescence) to be the most important plant traits regulating AtP. An influence of seed mass on attachment potential could not be detected. For sheep wool, a general linear model (with diaspore exposure as a factor and diaspore surface structure as covariate) explained 77% of the variation in AtPs. To validate this model, we predicted AtPs for 27 additional species and compared these to the measured Atps; the predicted and measured AtPscorrelated significantly with r(s) = 0.68. A comparison of attachment and retention potentials to sheep wool for 127 randomly selected plant species showed that attachment and retention are only very weakly correlated, indicating that both processes act rather independently of each other. Since many diaspores seem to perform well in only one of these processes, attachment can be considered to be as equally as decisive as retention in terms of epizoochorous dispersal.


Assuntos
Frutas/anatomia & histologia , Cabelo/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Bovinos , Cervos , Frutas/fisiologia , Modelos Lineares , Dinâmica Populacional , Ovinos , Lã/fisiologia
10.
Ecol Appl ; 17(2): 431-40, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17489250

RESUMO

Tools for estimating pollen dispersal and the resulting gene flow are necessary to assess the risk of gene flow from genetically modified (GM) to conventional fields, and to quantify the effectiveness of measures that may prevent such gene flow. A mechanistic simulation model is presented and used to simulate pollen dispersal by wind in different agricultural scenarios over realistic pollination periods. The relative importance of landscape-related variables such as isolation distance, topography, spatial configuration of the fields, GM field size and barrier, and environmental variation are examined in order to find ways to minimize gene flow and to detect possible risk factors. The simulations demonstrated a large variation in pollen dispersal and in the predicted amount of contamination between different pollination periods. This was largely due to variation in vertical wind. As this variation in wind conditions is difficult to control through management measures, it should be carefully considered when estimating the risk of gene flow from GM crops. On average, the predicted level of gene flow decreased with increasing isolation distance and with increasing depth of the conventional field, and increased with increasing GM field size. Therefore, at a national scale and over the long term these landscape properties should be accounted for when setting regulations for controlling gene flow. However, at the level of an individual field the level of gene flow may be dominated by uncontrollable variation. Due to the sensitivity of pollen dispersal to the wind, we conclude that gene flow cannot be summarized only by the mean contamination; information about the frequency of extreme events should also be considered. The modeling approach described in this paper offers a way to predict and compare pollen dispersal and gene flow in varying environmental conditions, and to assess the effectiveness of different management measures.


Assuntos
Simulação por Computador , Produtos Agrícolas/genética , Ecossistema , Plantas Geneticamente Modificadas/fisiologia , Pólen/fisiologia , Vento , Fluxo Gênico , Modelos Biológicos , Fatores de Tempo , Zea mays/genética , Zea mays/fisiologia
11.
Ann Bot ; 99(4): 777-83, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17353204

RESUMO

BACKGROUND AND AIMS: Biomass is an important trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive. Thus, they do not allow the development of individual plants to be followed and they require many individuals to be cultivated for repeated measurements. Non-destructive methods do not have these limitations. Here, a non-destructive method based on digital image analysis is presented, addressing not only above-ground fresh biomass (FBM) and oven-dried biomass (DBM), but also vertical biomass distribution as well as dry matter content (DMC) and growth rates. METHODS: Scaled digital images of the plants silhouettes were taken for 582 individuals of 27 grass species (Poaceae). Above-ground biomass and DMC were measured using destructive methods. With image analysis software Zeiss KS 300, the projected area and the proportion of greenish pixels were calculated, and generalized linear models (GLMs) were developed with destructively measured parameters as dependent variables and parameters derived from image analysis as independent variables. A bootstrap analysis was performed to assess the number of individuals required for re-calibration of the models. KEY RESULTS: The results of the developed models showed no systematic errors compared with traditionally measured values and explained most of their variance (R(2) > or = 0.85 for all models). The presented models can be directly applied to herbaceous grasses without further calibration. Applying the models to other growth forms might require a re-calibration which can be based on only 10-20 individuals for FBM or DMC and on 40-50 individuals for DBM. CONCLUSIONS: The methods presented are time and cost effective compared with traditional methods, especially if development or growth rates are to be measured repeatedly. Hence, they offer an alternative way of determining biomass, especially as they are non-destructive and address not only FBM and DBM, but also vertical biomass distribution and DMC.


Assuntos
Biomassa , Processamento de Imagem Assistida por Computador/métodos , Poaceae/anatomia & histologia , Modelos Biológicos , Poaceae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA