Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 307(11): G1073-87, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25301185

RESUMO

Extracellular nucleotides via activation of P2 purinergic receptors influence hepatocyte proliferation and liver regeneration in response to 70% partial hepatectomy (PH). Adult hepatocytes express multiple P2Y (G protein-coupled) and P2X (ligand-gated ion channels) purinergic receptor subtypes. However, the identity of key receptor subtype(s) important for efficient hepatocyte proliferation in regenerating livers remains unknown. To evaluate the impact of P2Y2 purinergic receptor-mediated signaling on hepatocyte proliferation in regenerating livers, wild-type (WT) and P2Y2 purinergic receptor knockout (P2Y2-/-) mice were subjected to 70% PH. Liver tissues were analyzed for activation of early events critical for hepatocyte priming and subsequent cell cycle progression. Our findings suggest that early activation of p42/44 ERK MAPK (5 min), early growth response-1 (Egr-1) and activator protein-1 (AP-1) DNA-binding activity (30 min), and subsequent hepatocyte proliferation (24-72 h) in response to 70% PH were impaired in P2Y2-/- mice. Interestingly, early induction of cytokines (TNF-α, IL-6) and cytokine-mediated signaling (NF-κB, STAT-3) were intact in P2Y2-/- remnant livers, uncovering the importance of cytokine-independent and nucleotide-dependent early priming events critical for subsequent hepatocyte proliferation in regenerating livers. Hepatocytes isolated from the WT and P2Y2-/- mice were treated with ATP or ATPγS for 5-120 min and 12-24 h. Extracellular ATP alone, via activation of P2Y2 purinergic receptors, was sufficient to induce ERK phosphorylation, Egr-1 protein expression, and key cyclins and cell cycle progression of hepatocytes in vitro. Collectively, these findings highlight the functional significance of P2Y2 purinergic receptor activation for efficient hepatocyte priming and proliferation in response to PH.


Assuntos
Hepatectomia , Hepatócitos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclinas/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2Y2/genética
2.
J Hepatol ; 59(6): 1246-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23928401

RESUMO

BACKGROUND & AIMS: Adult hepatocytes undergo cell cycle progression and proliferation in response to partial hepatectomy (PH). Transient lipid accumulation within hepatocytes preceding the peak proliferative phase is a characteristic feature of regenerating livers. However, the molecular mediators and mechanisms responsible for lipid accumulation in regenerating livers are not well understood. Adipose differentiation related protein (ADRP; Plin2) regulates hepatic triglyceride storage and Plin2-deficient (Plin2(-/-)) mice have significantly reduced triglyceride (TG) content in the liver. We sought to determine the functional significance of PLIN2 in liver regeneration in response to PH and toxic liver injury and examined whether absence of Plin2 expression modulates hepatocyte proliferation and liver regeneration. METHODS: We subjected wild-type (WT) and Plin2(-/-) mice to 70% PH or acute carbon tetrachloride (CCL4) treatment and examined the hepatic lipid content, the expression profile of lipid metabolism-related genes, the rate of cellular proliferation and the dynamics of liver regeneration in the treated animals. RESULTS: In response to PH, Plin2(-/-) mice showed decreased hepatic triglyceride accumulation and delayed cell cycle progression, which was associated with impaired liver regeneration. Fatty acid (FA) synthesis and lipid transfer gene expression profile were comparable between Plin2(-/-) and wild-type mice, while VLDL secretion rate was higher in the Plin2(-/-) mice. Downregulated ß-oxidation and reduced cytosolic FA level in Plin2(-/-) mice may have contributed to the attenuation of the liver regeneration capacity in these animals. In parallel experiments, we also observed attenuated hepatic lipid accumulation and proliferation in response to CCl4-mediated acute toxic liver injury in Plin2(-/-) mice. CONCLUSIONS: We conclude that PLIN2-mediated lipid accumulation and utilization by the liver is important for efficient liver regeneration in response to PH and toxic liver injury.


Assuntos
Regeneração Hepática , Proteínas de Membrana/fisiologia , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Hepatectomia , Hepatócitos/fisiologia , Lipogênese , Lipoproteínas VLDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Perilipina-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA