RESUMO
The use of digital health technologies to measure outcomes in clinical trials opens new opportunities as well as methodological challenges. Digital outcome measures may provide more sensitive and higher-frequency measurements but pose vital statistical challenges around how such outcomes should be defined and validated and how trials incorporating digital outcome measures should be designed and analysed. This article presents eight methodological questions, exploring issues such as the length of measurement period, choice of summary statistic and definition and handling of missing data as well as the potential for new estimands and new analyses to leverage the time series data from digital devices. The impact of key issues highlighted by the eight questions on a primary analysis of a trial are illustrated through a simulation study based on the 2019 Bellerophon INOPulse trial which had time spent in MVPA as a digital outcome measure. These eight questions present broad areas where methodological guidance is needed to enable wider uptake of digital outcome measures in trials.
Assuntos
Ensaios Clínicos como Assunto , Avaliação de Resultados em Cuidados de Saúde , Humanos , Ensaios Clínicos como Assunto/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Projetos de Pesquisa , Tecnologia DigitalRESUMO
BACKGROUND: Digital technologies, such as wearable devices and smartphone applications (apps), can enable the decentralisation of clinical trials by measuring endpoints in people's chosen locations rather than in traditional clinical settings. Digital endpoints can allow high-frequency and sensitive measurements of health outcomes compared to visit-based endpoints which provide an episodic snapshot of a person's health. However, there are underexplored challenges in this emerging space that require interdisciplinary and cross-sector collaboration. A multi-stakeholder Knowledge Exchange event was organised to facilitate conversations across silos within this research ecosystem. METHODS: A survey was sent to an initial list of stakeholders to identify potential discussion topics. Additional stakeholders were identified through iterative discussions on perspectives that needed representation. Co-design meetings with attendees were held to discuss the scope, format and ethos of the event. The event itself featured a cross-disciplinary selection of talks, a panel discussion, small-group discussions facilitated via a rolling seating plan and audience participation via Slido. A transcript was generated from the day, which, together with the output from Slido, provided a record of the day's discussions. Finally, meetings were held following the event to identify the key challenges for digital endpoints which emerged and reflections and recommendations for dissemination. RESULTS: Several challenges for digital endpoints were identified in the following areas: patient adherence and acceptability; algorithms and software for devices; design, analysis and conduct of clinical trials with digital endpoints; the environmental impact of digital endpoints; and the need for ongoing ethical support. Learnings taken for next generation events include the need to include additional stakeholder perspectives, such as those of funders and regulators, and the need for additional resources and facilitation to allow patient and public contributors to engage meaningfully during the event. CONCLUSIONS: The event emphasised the importance of consortium building and highlighted the critical role that collaborative, multi-disciplinary, and cross-sector efforts play in driving innovation in research design and strategic partnership building moving forward. This necessitates enhanced recognition by funders to support multi-stakeholder projects with patient involvement, standardised terminology, and the utilisation of open-source software.
Assuntos
Ensaios Clínicos como Assunto , Determinação de Ponto Final , Participação dos Interessados , Humanos , Ensaios Clínicos como Assunto/métodos , Comportamento Cooperativo , Comunicação Interdisciplinar , Aplicativos Móveis , Dispositivos Eletrônicos Vestíveis , Projetos de Pesquisa , SmartphoneRESUMO
Clinical trials that investigate physical activity interventions often use accelerometers to measure step count at a very granular level, for example in 5-second epochs. Participants typically wear the accelerometer for a week-long period at baseline, and for one or more week-long follow-up periods after the intervention. The data is aggregated to provide daily or weekly step counts for the primary analysis. Missing data are common as participants may not wear the device as per protocol. Approaches to handling missing data in the literature have defined missingness on the day level using a threshold on daily weartime, which leads to loss of information on the time of day when data are missing. We propose an approach to identifying and classifying missingness at the finer epoch-level and present two approaches to handling missingness using multiple imputation. Firstly, we present a parametric approach which accounts for the number of missing epochs per day. Secondly, we describe a non-parametric approach where missing periods during the day are replaced by donor data from the same person where possible, or data from a different person who is matched on demographic and physical activity-related variables. Our simulation studies show that the non-parametric approach leads to estimates of the effect of treatment that are least biased while maintaining small standard errors. We illustrate the application of these different multiple imputation strategies to the analysis of the 2017 PACE-UP trial. The proposed framework is likely to be applicable to other digital health outcomes and to other wearable devices.
Assuntos
Acelerometria , Exercício Físico , Humanos , Interpretação Estatística de Dados , Simulação por ComputadorRESUMO
Adjustment for baseline covariates in randomized trials has been shown to lead to gains in power and can protect against chance imbalances in covariates. For continuous covariates, there is a risk that the the form of the relationship between the covariate and outcome is misspecified when taking an adjusted approach. Using a simulation study focusing on individually randomized trials with small sample sizes, we explore whether a range of adjustment methods are robust to misspecification, either in the covariate-outcome relationship or through an omitted covariate-treatment interaction. Specifically, we aim to identify potential settings where G-computation, inverse probability of treatment weighting (IPTW), augmented inverse probability of treatment weighting (AIPTW) and targeted maximum likelihood estimation (TMLE) offer improvement over the commonly used analysis of covariance (ANCOVA). Our simulations show that all adjustment methods are generally robust to model misspecification if adjusting for a few covariates, sample size is 100 or larger, and there are no covariate-treatment interactions. When there is a non-linear interaction of treatment with a skewed covariate and sample size is small, all adjustment methods can suffer from bias; however, methods that allow for interactions (such as G-computation with interaction and IPTW) show improved results compared to ANCOVA. When there are a high number of covariates to adjust for, ANCOVA retains good properties while other methods suffer from under- or over-coverage. An outstanding issue for G-computation, IPTW and AIPTW in small samples is that standard errors are underestimated; they should be used with caution without the availability of small-sample corrections, development of which is needed. These findings are relevant for covariate adjustment in interim analyses of larger trials.
Assuntos
Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Simulação por Computador , Probabilidade , Tamanho da AmostraRESUMO
Accelerometers and other wearable devices are increasingly being used in clinical trials to provide an objective measure of the impact of an intervention on physical activity. Missing data are ubiquitous in this setting, typically for one of two reasons: patients may not wear the device as per protocol, and/or the device may fail to collect data (e.g. flat battery, water damage). However, it is not always possible to distinguish whether the participant stopped wearing the device, or if the participant is wearing the device but staying still. Further, a lack of consensus in the literature on how to aggregate the data before analysis (hourly, daily, weekly) leads to a lack of consensus in how to define a "missing" outcome. Different trials have adopted different definitions (ranging from having insufficient step counts in a day, through to missing a certain number of days in a week). We propose an analysis framework that uses wear time to define missingness on the epoch and day level, and propose a multiple imputation approach, at the day level, which treats partially observed daily step counts as right censored. This flexible approach allows the inclusion of auxiliary variables, and is consistent with almost all the primary analysis models described in the literature, and readily allows sensitivity analysis (to the missing at random assumption) to be performed. Having presented our framework, we illustrate its application to the analysis of the 2019 MOVE-IT trial of motivational interviewing to increase exercise.