Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(38): 39643-39651, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39346836

RESUMO

Long-chain fatty acid (LCFA) degradation primarily involves several species of Syntrophomonas and hydrogenotrophic methanogens, constituting the rate-limiting step in anaerobic digestion. It is crucial to augment their abundance to enhance LCFA degradation. Utilizing microbial carriers presents an effective strategy to maintain the microorganisms on the surface and prevent their washout from the digester. In this study, we aimed to identify a suitable microbial carrier with a superior adsorption capacity for LCFA-degrading microorganisms. We tested various polymers, poly(vinyl alcohol) (PVA), polypropylene (PP), polyethylene glycol (PEG), and polyvinylidene chloride (PVDC), adding them to the sludge at the concentration of 28.25 g L-1 and incubating with olive oil. The amplicon sequencing analysis revealed that PVDC retained Syntrophomonas more abundantly than the other polymers. Remarkably, PVDC predominantly adsorbed LCFA-degrading S. sapovorans and S. zehnderi, whereas medium- to short-chain fatty acid-degrading S. wolfei was abundant in the sludge. Moreover, hydrogenotrophic Methanospirillum hungatei was detected at 2.3-9.5 times higher abundance on PVDC compared to the sludge. Further analysis indicated that not only these LCFA-degrading syntrophic microbial communities but also Propionispira and Anaerosinus, which are capable of lipid hydrolysis and glycerol degradation, became dominant on PVDC. Actually, chemical analysis confirmed that adding PVDC promoted the olive oil degradation. These results underscore the potential of PVDC in promoting anaerobic LCFA degradation.

2.
Microbiol Resour Announc ; 13(7): e0040324, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38916296

RESUMO

This study reports a circular metagenome-assembled genome (cMAG) of Candidatus Cloacimonadota recovered from a mesophilic full-scale food waste treatment plant. The cMAG spans 2,298,113 bp, with 980× coverage and 1 contig.

4.
Microbiol Resour Announc ; 13(4): e0008324, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38526092

RESUMO

A single-contig, circular metagenome-assembled genome (cMAG) of Candidatus (Ca.) Patescibacteria was reconstructed from a mesophilic full-scale food waste treatment plant in Japan. The genome is of small size and lacks fundamental biosynthetic pathways. Taxonomic analysis using the Genome Taxonomy Database revealed that this cMAG belonged to the genus JAEZRQ01 (Ca. Parcubacteria).

5.
Microbes Environ ; 38(3)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766554

RESUMO

Rumen fibrolytic microorganisms have been used to increase the rate of lignocellulosic biomass biodegradation; however, the microbial and isozymatic characteristics of biodegradation remain unclear. Therefore, the present study investigated the relationship between rumen microorganisms and fibrolytic isozymes associated with lignocellulosic biomass hydrolysis. Rice straw, a widely available agricultural byproduct, was ground and used as a substrate. The biodegradation of rice straw powder was performed anaerobically in rumen fluid for 48 h. The results obtained revealed that 31.6 and 23.3% of cellulose and hemicellulose, respectively, were degraded. The total concentration of volatile fatty acids showed a 1.8-fold increase (from 85.4 to 151.6| |mM) in 48 h, and 1,230.1| |mL L-1 of CO2 and 523.5| |mL L-1 of CH4 were produced. The major isozymes identified by zymograms during the first 12| |h were 51- and 140-kDa carboxymethyl cellulases (CMCases) and 23- and 57-kDa xylanases. The band densities of 37-, 53-, and 58-kDa CMCases and 38-, 44-, and 130-kDa xylanases increased from 24 to 36 h. A microbial ana-lysis indicated that the relative abundances of Prevotella, Fibrobacter, and Bacteroidales RF16 bacteria, Neocallimastix and Cyllamyces fungi, and Dasytricha and Polyplastron protozoa were related to fibrolytic isozyme activity. The present results provide novel insights into the relationships between fibrolytic isozymes and rumen microorganisms during lignocellulose biodegradation.


Assuntos
Oryza , Animais , Isoenzimas , Pós , Rúmen , Agricultura
6.
Microbes Environ ; 38(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357389

RESUMO

Lipid-rich wastes are energy-dense substrates for anaerobic digestion. However, long-chain fatty acids (LCFAs), key intermediates in lipid degradation, inhibit methanogenic activity. In this study, TaqMan-based qPCR assays targeting the 16S rRNA gene of the cardinal LCFA-degrading bacterial species Syntrophomonas palmitatica and S. zehnderi were developed and validated. A trial experiment showed the advantage of species-specific quantification versus genus-specific quantification in assessing bacterial capacity for lipidic waste degradation. These qPCR assays will serve as monitoring tools for estimating the LCFA-degrading capacity of anaerobic digester communities and developing an effective strategy to enrich LCFA-degrading bacteria.


Assuntos
Reatores Biológicos , Ácidos Graxos , Anaerobiose , RNA Ribossômico 16S/genética , Reatores Biológicos/microbiologia , Ácidos Graxos/metabolismo , Bactérias Anaeróbias , Bactérias/genética , Bactérias/metabolismo , Reação em Cadeia da Polimerase , Metano/metabolismo
7.
J Biosci Bioeng ; 135(6): 480-486, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088674

RESUMO

The present study aimed to evaluate a semi-wet biocathode composed of oak white charcoal and agarose gel as an alternative to the standard carbon felt biocathodes used in microbial fuel cells (MFCs). The MFC containing the oak white charcoal cathode (Oak-MFC) recorded a higher current value than that of the MFC containing a carbon felt cathode (CF-MFC). The Oak-MFC produced approximately 4.0-fold more electrons in the external circuit and 1.7-fold more methane (CH4) than the CF-MFC. A real-time PCR targeting mcrA showed that the number of methanogens adhering to the oak white charcoal cathode was approximately 15-fold that adhering to the carbon felt cathode. These results suggest that the methanogens attached to the cathode of both MFCs received electrons and CH4 was produced from carbon dioxide (CO2). Furthermore, Oak-MFC performed better than CF-MFC, thereby suggesting that oak white charcoal bound by agarose gel can be used as an alternative methanogen cathode. The propionic acid degradation rate of Oak-MFC was faster than that of CF-MFC suggesting that the cathodic reaction may affect the anodic reaction. The use of oak-derived electrode as a methanogen cathode also could contribute to sustainable forest management and promote regular thinning of oak trees. Further, its use will enable carbon fixation and efficient energy conversion from CO2 to CH4, thus contributing to sustainable energy use.


Assuntos
Fontes de Energia Bioelétrica , Quercus , Eletricidade , Carvão Vegetal , Dióxido de Carbono , Fibra de Carbono , Sefarose , Eletrodos
8.
New Phytol ; 235(3): 993-1004, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590479

RESUMO

In forest ecosystems, understanding the relationship between the vertical distribution of fine roots and residual soil nitrogen is essential for clarifying the diversity-productivity-water purification relationship. Vertical distributions of fine-root biomass (FRB) and concentrations of nitrate-nitrogen (NO3 -N) in soil water were investigated in a conifer plantation with three thinning intensities (Control, Weak and Intensive), in which hardwood abundance and diversity were low, moderate and high, respectively. Intensive thinning led to the lowest NO3 -N concentration in soil water at all depths (0-100 cm) and highest FRB at shallow depths (0-50 cm). The NO3 -N concentration at a given depth was negatively correlated with total FRB from the surface to the depth at which NO3 -N concentration was measured, especially at shallow depths, indicating that more abundant fine roots led to lower levels of downward NO3 -N leaching. FRB contributed positively to nitrogen content of hardwood leaves. These findings demonstrate that a hardwood mixture in conifer plantations resulted in sufficient uptake of NO3 -N from soil by well developed fine-root systems, and translocation to canopy foliage. This study suggests that productivity and water purification can be achieved through a hardwood mixture in conifer plantations.


Assuntos
Solo , Traqueófitas , Ecossistema , Nitrogênio/análise , Raízes de Plantas/química , Água
9.
Microb Biotechnol ; 15(6): 1729-1743, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34964273

RESUMO

Treatment with rumen fluid improves methane production from non-degradable lignocellulosic biomass during subsequent methane fermentation; however, the kinetics of xylanases during treatment with rumen fluid remain unclear. This study aimed to identify key xylanases contributing to xylan degradation and their individual activities during xylan treatment with bovine rumen microorganisms. Xylan was treated with bovine rumen fluid at 37°C for 48 h under anaerobic conditions. Total solids were degraded into volatile fatty acids and gases during the first 24 h. Zymography showed that xylanases of 24, 34, 85, 180, and 200 kDa were highly active during the first 24 h. Therefore, these xylanases are considered to be crucial for xylan degradation during treatment with rumen fluid. Metagenomic analysis revealed that the rumen microbial community's structure and metabolic function temporally shifted during xylan biodegradation. Although statistical analyses did not reveal significantly positive correlations between xylanase activities and known xylanolytic bacterial genera, they positively correlated with protozoal (e.g., Entodinium, Diploplastron, and Eudiplodinium) and fungal (e.g., Neocallimastix, Orpinomyces, and Olpidium) genera and unclassified bacteria. Our findings suggest that rumen protozoa, fungi, and unclassified bacteria are associated with key xylanase activities, accelerating xylan biodegradation into volatile fatty acids and gases, during treatment of lignocellulosic biomass with rumen fluid.


Assuntos
Cilióforos , Microbiota , Animais , Bactérias/genética , Bactérias/metabolismo , Bovinos , Cilióforos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Gases/metabolismo , Metano/metabolismo , Rúmen/microbiologia , Xilanos/metabolismo
10.
Anim Sci J ; 92(1): e13653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714591

RESUMO

Rumen microorganisms produce various fibrolytic enzymes and degrade lignocellulosic materials into nutrient sources for ruminants; therefore, the characterization of fibrolytic enzymes contributing to the polysaccharide degradation in the rumen microbiota is important for efficient animal production. This study characterized the fibrolytic isozyme activities of a rumen microbiota from four groups of housed cattle (1, breeding Japanese Black; 2, feedlot Japanese Black; 3, lactating Holstein Friesian; 4, dry Holstein Friesian). Rumen fluids in all cattle groups showed similar concentrations of total volatile fatty acids and reducing sugars, whereas acetic acid contents and pH were different among them. Predominant genera were commonly detected in all cattle, although the bacterial compositions were different among cattle groups. Zymograms of whole proteins in rumen fluids showed endoglucanase activities at 55 and 57 kDa and xylanase activity at 44 kDa in all cattle. Meanwhile, several fibrolytic isozyme activities differed among cattle groups and individuals. Treponema, Succinivibrio, Anaeroplasma, Succiniclasticum, Ruminococcus, and Butyrivibrio showed positive correlations with fibrolytic isozyme activities. Further, endoglucanase activity at 68 kDa was positively correlated with pH. This study suggests the characteristics of fibrolytic isozyme activities and their correlations with the rumen microbiota.


Assuntos
Celulase , Microbiota , Rúmen/microbiologia , Ração Animal/análise , Animais , Bovinos , Celulase/metabolismo , Dieta , Feminino , Fermentação , Isoenzimas , Lactação , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA