Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 9(1): 42, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753262

RESUMO

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 24 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

2.
EJNMMI Radiopharm Chem ; 6(1): 31, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34495412

RESUMO

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development. RESULTS: This commentary of highlights has resulted in 21 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals. Also the first contribution in relation to MRI-agents is included. CONCLUSIONS: Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.

3.
ACS Chem Neurosci ; 12(3): 517-530, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491441

RESUMO

Cyclooxygenase-1 (COX-1) and its isozyme COX-2 are key enzymes in the syntheses of prostanoids. Imaging of COX-1 and COX-2 selective radioligands with positron emission tomography (PET) may clarify how these enzymes are involved in inflammatory conditions and assist in the discovery of improved anti-inflammatory drugs. We have previously labeled the selective high-affinity COX-1 ligand, 1,5-bis(4-methoxyphenyl)-3-(2,2,2-trifluoroethoxy)-1H-1,2,4-triazole (PS13), with carbon-11 (t1/2 = 20.4 min). This radioligand ([11C]PS13) has been successful for PET imaging of COX-1 in monkey and human brain and in periphery. [11C]PS13 is being used in clinical investigations. Alternative labeling of PS13 with fluorine-18 (t1/2 = 109.8 min) is desirable to provide a longer-lived radioligand in high activity that might be readily distributed among imaging centers. However, labeling of PS13 in its 1,1,1-trifluoroethoxy group is a radiochemical challenge. Here we assess two labeling approaches based on nucleophilic addition of cyclotron-produced [18F]fluoride ion to gem-difluorovinyl precursors, either to label PS13 in one step or to produce [18F]2,2,2-trifluoroethyl p-toluenesulfonate for labeling a hydroxyl precursor. From the latter two-step approach, we obtained [18F]PS13 ready for intravenous injection in a decay-corrected radiochemical yield of 7.9% and with a molar activity of up to 7.9 GBq/µmol. PET imaging of monkey brain with [18F]PS13 shows that this radioligand can specifically image and quantify COX-1 without radiodefluorination but with some radioactivity uptake in skull, ascribed to red bone marrow. The development of a new procedure for labeling PS13 with fluorine-18 at a higher molar activity is, however, desirable to suppress occupancy of COX-1 by carrier at baseline.


Assuntos
Fluoretos , Radioisótopos de Flúor , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Ciclo-Oxigenase 1/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
4.
ACS Omega ; 5(31): 19557-19564, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803050

RESUMO

Prior studies have shown that trifluoromethylarenes can be labeled in high molar activities (A m > 200 GBq/µmol) with positron-emitting carbon-11 (t 1/2 = 20.4 min) by the reaction of the copper(I) derivative of [11C]fluoroform [11C]CuCF3, with several types of precursors, such as aryl iodides, arylboronic acids, and aryldiazonium salts. Nonetheless, these precursors can be challenging to synthesize, and in the case of diazonium salts, are unstable. Methods that reduce challenges in precursor preparation for the synthesis of [11C]trifluoromethylarenes are desirable to enhance possibilities for developing biologically relevant 11C-labeled compounds as radiotracers for biomedical imaging with positron emission tomography (PET). Here, we explored the production of no-carrier-added [11C]trifluoromethylarenes from commercially available primary aromatic amines through reactions of [11C]CuCF3 with diazonium salts that were generated in situ. Moderate to high isolated decay-corrected radiochemical yields (RCY) (32-84%) were obtained rapidly (within 2 min) for many para-substituted and meta-substituted primary aromatic amines bearing a halo, methoxy, thiomethyl, hydroxy, nitro, nitrile, carboxyl, ethylcarboxy, or trifluoromethyl substituent. Null to low RCYs (0-13%) were observed only for ortho bromo-, nitro-, or nitrile-substituted precursors. This new radiosynthetic method usefully expands options for producing PET radiotracers bearing a [11C]trifluoromethyl group, especially from aryl amine precursors.

5.
Future Med Chem ; 12(6): 511-521, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32100545

RESUMO

Aim: The receptor for advanced glycation end products (RAGE) is a viable target for early Alzheimer's disease (AD) diagnosis using positron emission tomography (PET) as RAGE overexpression precedes Aß plaque formation. The development of a carbon-11 analog of FPS-ZM1 (N-benzyl-4-chloro-N-cyclohexylbenzamide, [11C]FPS-ZM1), possessing nanomolar affinity for RAGE, may enable the imaging of RAGE for early AD detection. Methodology & results: Herein we report an optimized [11C]CO2-to-[11C]CO chemical conversion for the synthesis of [11C]FPS-ZM1 and in vitro brain autoradiography. The [11C]CO2-to-[11C]CO conversion via 11C-silanecarboxylate derivatives was achieved with a 57% yield within 30 s from end of [11C]CO2 delivery. [11C]FPS-ZM1 was obtained with a decay-corrected isolated radiochemical yield of 9.5%. Conclusion: [11C]FPS-ZM1 distribution in brain tissues of wild-type versus transgenic AD model mice showed no statistically significant difference and high nondisplaceable binding.


Assuntos
Benzamidas/química , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Tomografia por Emissão de Pósitrons , Receptor para Produtos Finais de Glicação Avançada/análise , Animais , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Radioisótopos de Carbono , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Receptor para Produtos Finais de Glicação Avançada/metabolismo
7.
EJNMMI Radiopharm Chem ; 4(1): 25, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31659516

RESUMO

[11C]Carbon monoxide is an appealing synthon for introducing carbon-11 at a carbonyl position (C=O) in a wide variety of chemotypes (e.g., amides, ketones, acids, esters, and ureas). The prevalence of the carbonyl group in drug molecules and the present-day broad versatility of carbonylation reactions have led to an upsurge in the production of this synthon and in its application to PET radiotracer development. This review focuses on the major advances of the past 15 years.

8.
J Labelled Comp Radiopharm ; 61(3): 237-251, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274276

RESUMO

[11 C]Carbon dioxide ([11 C]CO2 ) and [11 C]carbon monoxide ([11 C]CO) are 2 attractive precursors for labelling the carbonyl position (C═O) in a vast range of functionalised molecules (eg, ureas, amides, and carboxylic acids). The development of radiosynthetic methods to produce functionalised 11 C-labelled compounds is required to enhance the radiotracers available for positron emission tomography, molecular, and medical imaging applications. Following a brief summary of secondary 11 C-precursor production and uses, the review focuses on recent progress with direct 11 C-carboxylation routes with [11 C]CO2 and 11 C-carbonylation with [11 C]CO. Novel approaches to generate [11 C]CO using CO-releasing molecules (CO-RMs), such as silacarboxylic acids and disilanes, applied to radiochemistry are described and compared with standard [11 C]CO production methods. These innovative [11 C]CO synthesis strategies represent efficient and reliable [11 C]CO production processes, enabling the widespread use of [11 C]CO chemistry within the wider radiochemistry community.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Radioisótopos de Carbono/química , Compostos Radiofarmacêuticos/síntese química , Tomografia por Emissão de Pósitrons/métodos
9.
Chemistry ; 23(32): 7682-7685, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28419627

RESUMO

The development of a fast and novel methodology to generate carbon-11 carbon monoxide ([11 C]CO) from cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) mediated by a fluoride-activated disilane species is described. This methodology allows up to 74 % conversion of [11 C]CO2 to [11 C]CO using commercially available reagents, readily available laboratory equipment and mild reaction conditions (room temperature). As proof of utility, radiochemically pure [carbonyl-11 C]N-benzylbenzamide was successfully synthesized from produced [11 C]CO in up to 74 % radiochemical yield (RCY) and >99 % radiochemical purity (RCP) in ≤10 min from end of [11 C]CO2 delivery.

10.
Chem Commun (Camb) ; 51(59): 11795-7, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26107103

RESUMO

A novel chemical methodology is described for the conversion of [(11)C]CO2 to [(11)C]CO. Diphenylmethyl silanes trap [(11)C]CO2 and release [(11)C]CO rapidly when triggered by TBAF. Released [(11)C]CO was used to produce [(11)C]N-benzylbenzamide and AMPA receptor ligand, [(11)C], in radiochemical yields >90% within 6 min from [(11)C]CO2 production.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Silanos/química , Radioisótopos de Carbono , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA