Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21273, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481845

RESUMO

For heating, ventilation or air conditioning purposes in massive multistory building constructions, ducts are a common choice for air supply, return, or exhaust. Rapid population expansion, particularly in industrially concentrated areas, has given rise to a tradition of erecting high-rise buildings in which contaminated air is removed by making use of vertical ducts. For satisfying the enormous energy requirements of such structures, high voltage wires are used which are typically positioned near the ventilation ducts. This leads to a consequent motivation of studying the interaction of magnetic field (MF) around such wires with the flow in a duct, caused by vacuum pump or exhaust fan etc. Therefore, the objective of this work is to better understand how the established (thermally and hydrodynamically) movement in a perpendicular square duct interacts with the MF formed by neighboring current-carrying wires. A constant pressure gradient drives the flow under the condition of uniform heat flux across the unit axial length, with a fixed temperature on the duct periphery. After incorporating the flow assumptions and dimensionless variables, the governing equations are numerically solved by incorporating a finite volume approach. As an exclusive finding of the study, we have noted that MF caused by the wires tends to balance the flow reversal due to high Raleigh number. The MF, in this sense, acts as a balancing agent for the buoyancy effects, in the laminar flow regime.

2.
Sci Rep ; 12(1): 18406, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319834

RESUMO

The objective of this article is to model and analyze unsteady squeezing flow of fractional MHD Casson fluid through a porous channel. Casson fluid model is significant in understanding the properties of non-Newtonian fluids such as blood flows, printing inks, sauces and toothpaste etc. This study provides important results as unsteady flow of Casson fluid in fractional sense with aforementioned effects has not been captured in existing literature. After applying similarity transformations along with fractional calculus a highly non-linear fractional-order differential equation is obtained. Modeled equation is then solved along with no-slip boundary conditions through a hybrid of Laplace transform with homotopy perturbation algorithm. For validity purposes, solution and errors at various values in fractional domain are compared with existing results. LHPM results are better in terms of accuracy than other available results in literature. Effects of fractional parameter on the velocity profile, skin friction and behaviors of involved fluid parameters is the focal point of this study. Comprehensive, quantitative and graphical analysis is performed for investigating the effects of pertinent fluid parameters on the velocity profile and skin friction. Analysis revealed that fractional parameter depicts similar effect in case of positive and negative squeeze number. Also, skin friction decreases with an increasing fractional parameter. Moreover, in fractional environment Casson parameter has shown similar effect on the velocity profile in case of positive and negative squeeze number.

3.
Sci Rep ; 12(1): 18462, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323793

RESUMO

The current study investigates different methods to minimize the drag coefficient (CD) without ignoring the safety factor related to the stability of a vehicle, i.e., the lift coefficient (CL). The study was carried out by employing an SUV car analyzed numerically using one of the CFD software, Ansys. Four different models such as realizable k-ε, standard k-ω, shear stress transport k-ω, and Reynolds stress model (RSM). The considered models have been validated with experimental data and found in good agreement. The considered inlet velocity varies from 28 to 40 m/s, the results showed that the drag coefficient and the stability are both improved by applying a modification on the roof of the considered car.


Assuntos
Automóveis , Software , Estresse Mecânico
4.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432270

RESUMO

Arsenic (III) is a toxic contaminant in water bodies, especially in drinking water reservoirs, and it is a great challenge to remove it from wastewater. For the successful extraction of arsenic (III), a nanocomposite material (ZnO-CuO/g-C3N4) has been synthesized by using the solution method. The large surface area and plenty of hydroxyl groups on the nanocomposite surface offer an ideal platform for the adsorption of arsenic (III) from water. Specifically, the reduction process involves a transformation from arsenic (III) to arsenic (V), which is favorable for the attachment to the -OH group. The modified surface and purity of the nanocomposite were characterized by SEM, EDX, XRD, FT-IR, HRTEM, and BET models. Furthermore, the impact of various aspects (temperatures, pH of the medium, the concentration of adsorbing materials) on adsorption capacity has been studied. The prepared sample displays the maximum adsorption capacity of arsenic (III) to be 98% at pH ~ 3 of the medium. Notably, the adsorption mechanism of arsenic species on the surface of ZnO-CuO/g-C3N4 nanocomposite at different pH values was explained by surface complexation and structural variations. Moreover, the recycling experiment and reusability of the adsorbent indicate that a synthesized nanocomposite has much better adsorption efficiency than other adsorbents. It is concluded that the ZnO-CuO/g-C3N4 nanocomposite can be a potential candidate for the enhanced removal of arsenic from water reservoirs.

5.
Sci Rep ; 12(1): 20272, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434018

RESUMO

The present study proposes aerodynamically optimized exterior designs of a sport utility vehicle using computational fluid dynamics analysis based on steady-state Reynolds-averaged Navier-Stokes turbulence models. To achieve an optimal design, modifications of the outer shape and adding some aerodynamic devices are investigated. This study focuses on modifying this vehicle model's upper and front parts. At the same time, the rear diffuser and spare tire on the back door as a fairing are used as aerodynamic devices for improving streamlines. All these modifications and add-on devices are simulated individually or in combination to achieve the best exterior design. A variety of Reynolds numbers are used for determining the optimization variables. Tetrahedral cells are used throughout the global domain because of the sharp edges in the geometry of the Discovery car model. At the same time, prism cells around car surfaces are adopted to improve the accuracy of the results. A good agreement between the numerical drag coefficient in the present study for the baseline models and the experimental data has been achieved. Changes in the drag and lift coefficients are calculated for all models. It is clear from the numerical results that the use of combined modifications and add-on devices has a significant effect in improving the overall aerodynamic behavior. As a result, the drag coefficient for the optimal design of the Discovery 4th generation is reduced from 0.4 to 0.352 by about 12% compared to the benchmark. Simultaneously, the lift coefficient is 0.037 for optimal design, and it is an acceptable value. It is found that combining all optimal modified configurations can improve both CD and CL simultaneously.

6.
Sci Rep ; 12(1): 18838, 2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36336701

RESUMO

The second iteration of the optimal homotopy asymptotic technique (OHAM-2) has been protracted to fractional order partial differential equations in this work for the first time (FPDEs). Without any transformation, the suggested approach can be used to solve fractional-order nonlinear Zakharov-Kuznetsov equations. The Caputo notion of the fractional-order derivative, whose values fall within the closed interval [0, 1], has been taken into consideration. The method's appeal is that it provides an approximate solution after just one iteration. The suggested method's numerical findings have been contrasted with those of the variational iteration method, residual power series method, and perturbation iteration method. Through tables and graphs, the proposed method's effectiveness and dependability are demonstrated.

7.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296567

RESUMO

Entropy is a thermodynamic function in chemistry that reflects the randomness and disorder of molecules in a particular system or process based on the number of alternative configurations accessible to them. Distance-based entropy is used to solve a variety of difficulties in biology, chemical graph theory, organic and inorganic chemistry, and other fields. In this article, the characterization of the crystal structure of niobium oxide and a metal-organic framework is investigated. We also use the information function to compute entropies by building these structures with degree-based indices including the K-Banhatti indices, the first redefined Zagreb index, the second redefined Zagreb index, the third redefined Zagreb index, and the atom-bond sum connectivity index.


Assuntos
Estruturas Metalorgânicas , Nióbio , Entropia , Óxidos , Compostos Orgânicos
8.
Sci Rep ; 12(1): 18130, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307469

RESUMO

Current investigation emphasizes the evaluation of entropy in a porous medium of Williamson nanofluid (WNF) flow past an exponentially extending horizontal plate featuring Parabolic Trough Solar Collector (PTSC). Two kinds of nanofluids such as copper-methanol (Cu-MeOH) and alumina-methanol (Al2O3-MeOH) were tested, discussed and plotted graphically. The fabricated nanoparticles are studied using different techniques, including TDDFT/DMOl3 method as simulated and SEM measurements as an experimental method. The centroid lengths of the dimer are 3.02 Å, 3.27 Å, and 2.49 Å for (Cu-MeOH), (Al2O3-MeOH), and (Cu-MeOH-αAl-MOH), respectively. Adequate similarity transformations were applied to convert the partial differential equation (PDEs) into nonlinear ordinary differential equations (ODEs) with the corresponding boundary constraints. An enhancement in Brinkmann and Reynolds numbers increases the overall system entropy. WNF parameter enhances the heat rate in PTSC. The thermal efficiency gets elevated for Cu-MeOH than that of Al2O3-MeOH among 0.8% at least and 6.6% in maximum for varying parametric values.

9.
Sci Rep ; 12(1): 18183, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307505

RESUMO

Diesel engine characteristics were investigated experimentally while adding different concentrations of third generation biodiesel spirulina algae methyl ester (SAME). Three volumetric blends of SAME are added to standard Iraqi diesel, namely 10% SAME, 20% SAME, and 30% SAME. The properties of the fuels were found according to the American Society for Testing and Materials standards (ASTM). Experimental work was conducted on a single-cylinder diesel engine under variable load and compression ratio. Three compression ratios are used, starting from 14.5, 15.5, and 16.5. Based on the results obtained, the presence of SAME along with diesel caused an increase in Brake specific fuel consumption (BSFC), carbon dioxide (CO2), and nitrogen oxides (NOx) while decreasing both brake thermal efficiency (BTE) and exhaust gas temperature (EGT). Hydrocarbon (HC) emissions decreased by 7.14%, 8.57%, and 10.71%, for 10% SAME, 20% SAME, and 30% SAME, respectively, compared to the original neat diesel fuel. The dramatic carbon monoxide (CO) emission reduction was at full load point. The addition of SAME from (10 to 30)% reported a decrease in CO by (6.67-20)%. NOx, as well as CO2 emission, are increased as a result of SAME addition. The compression ratio change from (14.5/1 to 16.5/1) led to increased BTE, NOx, and decreased BSFC and all carbon emissions. The experimental results are validated with other studies' findings, and minor divergence is reported.


Assuntos
Spirulina , Dióxido de Carbono/análise , Gasolina , Emissões de Veículos , Biocombustíveis , Monóxido de Carbono/análise , Ésteres
10.
Sci Rep ; 12(1): 18096, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302798

RESUMO

In order to understand the characteristics of bio-convection and moving microorganisms in flows of magnetized Walters-B nano-liquid, we developed a model employing Riga plate with stretchy sheet. The Buongiorno phenomenon is likewise employed to describe nano-liquid motion in the Walters-B fluid. Expending correspondence transformations, the partial differential equation (PDE) control system has been transformed into an ordinary differential equation (ODE) control system. The COMSOL program is used to generate mathematical answers for non-linear equations by employing the Galerkin finite element strategy (G-FEM). Utilizing logical and graphical metrics, temperature, velocity, and microbe analysis are all studied. Various estimates of well-known physical features are taken into account while calculating nanoparticle concentrations. It is demonstrated that this model's computations directly relate the temperature field to the current Biot number and parameter of the Walters-B fluid. The temperature field is increased to increase the approximations of the current Biot number and parameter of the Walters-B fluid.


Assuntos
Convecção , Modelos Teóricos , Análise de Elementos Finitos , Temperatura , Movimento (Física)
11.
Sci Rep ; 12(1): 17794, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273100

RESUMO

A numerical analysis of natural convective heat transfer in a square porous cavity with a solid wavy finite wall filled with (35% MWCNT-65% Fe3O4)/water hybrid nanofluid. The left wavy wall is heated to a constant temperature, the right wall is held at a low temperature, and the top and bottom walls are thermally insulated. Darcy-Brinkman-Forchheimer model is used to model porous medium with hybrid nanofluid. COMSOL Multiphasic Modeling Software via Galerkin finite element method has been used to solve the governing equations. The dimensionless parameters used in this investigation are; modified Rayleigh number (Ra* = 102, 103, 104, and 106), Darcy number (Da = 10-2, 10-4 and 10-6), Solid volume fraction (ϕ = 0.01, 0.03, and 0.05),undulation number (N = 1, 3, 5, and 7), amplitude of the wavy wall (A = 0.1, 0.2, and 0.3), and Prandtl number = 7.2 at constant high porosity. At a high Darcy number (Da = 10-2), the isotherm lines parallel to the vertical cavity walls, which means that conduction is the primary method of heat transport. At the same time, the convection mode is increasingly necessary at a lower Darcy number. The convection flow and the maximum amounts of stream function are reduced when both A = 0.1 and N = 1 increase. The average Nusselt number increases with increasing Ra*, while it decreases with increasing Darcy number and amplitude wave numbers. It has been determined that the largest improvement in heat transfer is at Ra* = 104, Da = 10-6, ϕ = 0.05, A = 0.1, and N = 1.

12.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615395

RESUMO

A topological index as a graph parameter was obtained mathematically from the graph's topological structure. These indices are useful for measuring the various chemical characteristics of chemical compounds in the chemical graph theory. The number of atoms that surround an atom in the molecular structure of a chemical compound determines its valency. A significant number of valency-based molecular invariants have been proposed, which connect various physicochemical aspects of chemical compounds, such as vapour pressure, stability, elastic energy, and numerous others. Molecules are linked with numerical values in a molecular network, and topological indices are a term for these values. In theoretical chemistry, topological indices are frequently used to simulate the physicochemical characteristics of chemical molecules. Zagreb indices are commonly employed by mathematicians to determine the strain energy, melting point, boiling temperature, distortion, and stability of a chemical compound. The purpose of this study is to look at valency-based molecular invariants for SiO4 embedded in a silicate chain under various conditions. To obtain the outcomes, the approach of atom-bond partitioning according to atom valences was applied by using the application of spectral graph theory, and we obtained different tables of atom-bond partitions of SiO4. We obtained exact values of valency-based molecular invariants, notably the first Zagreb, the second Zagreb, the hyper-Zagreb, the modified Zagreb, the enhanced Zagreb, and the redefined Zagreb (first, second, and third). We also provide a graphical depiction of the results that explains the reliance of topological indices on the specified polynomial structure parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA