Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 45(4): 701-709, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098375

RESUMO

The down-flow hanging sponge (DHS) reactor is advantageous for sewage treatment since it produces an effluent quality that complies with the standards for reuse and there is little excess sludge. A full-scale DHS module was efficiently employed for the treatment of domestic sewage (200 m3 day-1) flowing from a primary sedimentation basin (PSB), which was used to reduce the suspended solids loading rate and enhance the oxidation of organics by heterotrophs. The combined PSB-DHS was successfully operated at a total hydraulic retention time of 3.4 h (2.4 h for PSB and 1.0 h for DHS) for the relatively long period of 600 days at sewage temperatures of 10 °C to 32 °C. The PSB-DHS consistently produced an effluent quality with minimum values of chemical oxygen demand, biochemical oxygen demand, and suspended solids of 59 ± 15, 12 ± 3.0, and 15 ± 7 mg L-1, respectively. The proposed system performed exceptionally well at removing organics and particulate matter over a short hydraulic retention time.


Assuntos
Reatores Biológicos , Esgotos , Análise da Demanda Biológica de Oxigênio , Temperatura , Eliminação de Resíduos Líquidos
2.
Water Sci Technol ; 82(2): 292-302, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941171

RESUMO

Duckweed biomass production in a duckweed pond fed with three differently treated sewage (i.e. sewage treated by primary sedimentation (PS); conventional activated sludge process (CAS); and downflow hanging sponge process (DHS)) was evaluated in order to assess the effects of water quality on biomass yield. Higher and stable biomass production was observed when the duckweed pond was fed with PS or DHS-effluent than with CAS-effluent, evidently due to the difference in nutrient loads. Availability of nutrients, especially phosphorus, affected the biomass production rate: higher the nutrient, faster the production. Microbial community analysis revealed that the members of Rhizobiales were likely to contribute to stable and high biomass growth. From the results of the study, a sewage treatment system consisting of a primary sedimentation followed by a duckweed pond and a tertiary treatment unit can be proposed to maximize biomass production without compromising treatment objectives. Size and operational parameters of the duckweed pond should be determined primarily based on the nutrient availability in the influent water to maximize duckweed growth.


Assuntos
Araceae , Microbiota , Biomassa , Lagoas , Esgotos , Eliminação de Resíduos Líquidos
3.
Environ Technol ; 40(21): 2825-2832, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29558269

RESUMO

This paper assesses the technical and economic sustainability of a combined system of an up-flow anaerobic sludge blanket (UASB)-down-flow hanging sponge (DHS) for sewage treatment. Additionally, this study compares UASB-DHS with current technologies in India like trickling filters (TF), sequencing batch reactor (SBR), moving bed biofilm reactor (MBBR), and other combinations of UASB with post-treatment systems such as final polishing ponds (FPU) and extended aeration sludge process (EASP). The sustainability of the sewage treatment plants (STPs) was evaluated using a composite indicator, which incorporated environmental, societal, and economic dimensions. In case of the individual sustainability indicator study, the results showed that UASB-FPU was the most economically sustainable system with a score of 0.512 and aeration systems such as MBBR, EASP, and SBR were environmentally sustainable, whereas UASB-DHS system was socially sustainable. However, the overall comparative analysis indicated that the UASB-DHS system scored the highest value of 2.619 on the global sustainability indicator followed by EASP and MBBR with scores of 2.322 and 2.279, respectively. The highlight of this study was that the most environmentally sustainable treatment plants were not economically and socially sustainable. Moreover, sensitivity analysis showed that five out of the seven scenarios tested, the UASB-DHS system showed good results amongst the treatment system.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Biofilmes , Reatores Biológicos , Índia
4.
Front Microbiol ; 9: 830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755444

RESUMO

Detection and genotyping of pathogenic RNA viruses in human and environmental samples are useful for monitoring the circulation and prevalence of these pathogens, whereas a conventional PCR assay followed by Sanger sequencing is time-consuming and laborious. The present study aimed to develop a high-throughput detection-and-genotyping tool for 11 human RNA viruses [Aichi virus; astrovirus; enterovirus; norovirus genogroup I (GI), GII, and GIV; hepatitis A virus; hepatitis E virus; rotavirus; sapovirus; and human parechovirus] using a microfluidic device and next-generation sequencer. Microfluidic nested PCR was carried out on a 48.48 Access Array chip, and the amplicons were recovered and used for MiSeq sequencing (Illumina, Tokyo, Japan); genotyping was conducted by homology searching and phylogenetic analysis of the obtained sequence reads. The detection limit of the 11 tested viruses ranged from 100 to 103 copies/µL in cDNA sample, corresponding to 101-104 copies/mL-sewage, 105-108 copies/g-human feces, and 102-105 copies/g-digestive tissues of oyster. The developed assay was successfully applied for simultaneous detection and genotyping of RNA viruses to samples of human feces, sewage, and artificially contaminated oysters. Microfluidic nested PCR followed by MiSeq sequencing enables efficient tracking of the fate of multiple RNA viruses in various environments, which is essential for a better understanding of the circulation of human pathogenic RNA viruses in the human population.

5.
Appl Microbiol Biotechnol ; 102(10): 4381-4392, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29594342

RESUMO

The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.


Assuntos
Biodiversidade , Reatores Biológicos/microbiologia , Microbiota/fisiologia , Esgotos/microbiologia , Índia , Estações do Ano , Eliminação de Resíduos Líquidos
6.
Water Sci Technol ; 77(3-4): 608-616, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29431705

RESUMO

The characteristics of sludge retained in a down-flow hanging sponge reactor were investigated to provide a better understanding of the sewage treatment process in the reactor. The organic removal and sulfur oxidation conditions were found to differ between the first layer and the following three layers. It was found that 63% and 59% of the organic matter was removed in the first layer, even though the hydraulic retention time was only 0.2 h. It is thought that the organic removal resulted from aerobic and anaerobic biodegradation on the sponge medium. The sulfate concentration increased 1.5-1.9-fold in the first layer, with almost no subsequent change in the second to fourth layers. It was shown that oxidation of sulfide in the influent was completed in the first layer. The result of the oxygen uptake rate test with an ammonium nitrogen substrate suggested that the ammonium oxidation rate was affected by the condition of dissolved oxygen (DO) or oxidation-reduction potential (ORP).


Assuntos
Reatores Biológicos , Oxigênio/metabolismo , Esgotos , Poluentes Químicos da Água/metabolismo , Aerobiose , Compostos de Amônio/metabolismo , Anaerobiose , Biodegradação Ambiental , Nitrogênio/metabolismo , Oxirredução , Sulfatos/metabolismo , Enxofre/metabolismo , Eliminação de Resíduos Líquidos
7.
Environ Technol ; 39(7): 907-916, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28387149

RESUMO

Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m-3 day-1), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the CODCr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L-1) and low DO (less than 1 mg L-1) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, CODCr, and NH3-N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.


Assuntos
Compostos de Amônio/análise , Reatores Biológicos , Oxigênio/análise , Nitrogênio , Esgotos , Temperatura , Eliminação de Resíduos Líquidos
8.
Water Res ; 110: 389-398, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038763

RESUMO

A down-flow hanging sponge (DHS) reactor has been developed as a cost-effective wastewater treatment system that is adaptable to local conditions in low-income countries. A pilot-scale DHS reactor previously demonstrated stable reduction efficiencies for chemical oxygen demand (COD) and ammonium nitrogen over a year at ambient temperature, but the pathogen reduction efficiency of the DHS reactor has yet to be investigated. In the present study, the reduction efficiency of a pilot-scale DHS reactor fed with municipal wastewater was investigated for 10 types of human pathogenic viruses (norovirus GI, GII and GIV, aichivirus, astrovirus, enterovirus, hepatitis A and E viruses, rotavirus, and sapovirus). DHS influent and effluent were collected weekly or biweekly for 337 days, and concentrations of viral genomes were determined by microfluidic quantitative PCR. Aichivirus, norovirus GI and GII, enterovirus, and sapovirus were frequently detected in DHS influent, and the log10 reduction (LR) of these viruses ranged from 1.5 to 3.7. The LR values for aichivirus and norovirus GII were also calculated using a Bayesian estimation model, and the average LR (±standard deviation) values for aichivirus and norovirus GII were estimated to be 1.4 (±1.5) and 1.8 (±2.5), respectively. Quantitative microbial risk assessment was conducted to calculate a threshold reduction level for norovirus GII that would be required for the use of DHS effluent for agricultural irrigation, and it was found that LRs of 2.6 and 3.7 for norovirus GII in the DHS effluent were required in order to not exceed the tolerable burden of disease at 10-4 and 10-6 disability-adjusted life years loss per person per year, respectively, for 95% of the exposed population during wastewater reuse for irrigation.


Assuntos
Irrigação Agrícola , Águas Residuárias/virologia , Animais , Teorema de Bayes , Humanos , Poríferos , Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA