Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631897

RESUMO

IFN-γ plays a critical role in host defense against intracellular pathogens. IFN-γ is produced in the bronchoalveolar lavage fluid of mice infected with Pneumocystis, but the role of IFN-γ in host defense against Pneumocystis remains controversial. It has been previously reported that although exogenous IFN-γ has beneficial effects on eradication of Pneumocystis, endogenous IFN-γ has a negative impact on innate immunity in immunocompromised hosts. Surprisingly, CD4+ T cell-depleted IFN-γ deficient (GKO) mice exhibit resistance to Pneumocystis. Alveolar macrophages (AM) from GKO mice exhibit higher expression of macrophage mannose receptor (MMR) and Dectin-1. Concomitantly, they exhibited greater ability to phagocytize Pneumocystis, and this activity was suppressed by inhibitors of these receptors. Incubation with IFN-γ resulted in a reduction in both the expression of these receptors on AM and their Pneumocystis-phagocytic activity. These results indicate that endogenous IFN-γ facilitates Pneumocystis to escape from host innate immunity by attenuating the phagocytic activity of AM via downregulation of MMR and Dectin-1.

2.
World J Gastroenterol ; 28(14): 1444-1454, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35582675

RESUMO

BACKGROUND: Liver transplantation is a therapy for irreversible liver failure; however, at present, donor organs are in short supply. Cell transplantation therapy for liver failure is still at the developmental stage and is critically limited by a shortage of human primary hepatocytes. AIM: To investigate the possibility that hepatic progenitor cells (HPCs) prepared from the portal branch-ligated hepatic lobe may be used in regenerative medicine, we attempted to enable the implantation of extracellular matrices containing organoids consisting of HPC-derived hepatocytes and non-parenchymal cells. METHODS: In vitro liver organoid tissue has been generated by accumulating collagen fibrils, fibroblasts, and HPCs on a mesh of polylactic acid fabric using a bioreactor; this was subsequently implanted into syngeneic wild-type mice. RESULTS: The in vitro liver organoid tissues generated transplantable tissues in the condensed collagen fibril matrix and were obtained from the mouse through partial hepatectomy. CONCLUSION: Liver organoid tissue was produced from expanded HPCs using an originally designed bioreactor system. This tissue was comparable to liver lobules, and with fibroblasts embedded in the network collagen fibrils of this artificial tissue, it is useful for reconstructing the hepatic interstitial structure.


Assuntos
Matriz Extracelular , Falência Hepática , Animais , Colágeno/análise , Hepatócitos , Humanos , Fígado/cirurgia , Camundongos , Células-Tronco
3.
J Oral Biosci ; 64(2): 237-244, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398598

RESUMO

OBJECTIVES: Osteoclasts can sense the surface topography of materials. However, it is difficult to identify the structural factors that affect osteoclast formation and its function. Furthermore, we hypothesized that the type of osteoclast precursor cells also affects osteoclastogenesis in the materials. In this study, we investigated the effects of defined micro/nanoscale patterns on osteoclastogenesis from bone marrow cells (BMCs). METHODS: Various cyclo-olefin polymer (COP) patterns were prepared using nanoimprinting. The effects of shape, size, and height of the patterns, and the wettability of the patterned surfaces on osteoclastogenesis from BMCs were evaluated in vitro. RESULTS: Osteoclast formation was promoted on pillars (diameter, 1 µm or 500 nm; height, 500 nm). Notably, osteoclastogenesis from BMCs was better promoted on hydrophobic pillars than on hydrophilic pillars. In contrast, decreased osteoclast formation was observed on the nanopillars (diameter, 100 nm; height, 200 nm). CONCLUSIONS: We demonstrated the promotion of osteoclast formation from BMCs on hydrophobic pillars with diameters of 1 µm and 500 nm. Some cellular behaviors in the patterns were dependent on the type of osteoclast precursor cells. The designed patterns are useful for designing the surface of dental implants or bone replacement materials with a controllable balance between osteoblast and osteoclast activities.


Assuntos
Osteoclastos , Ligante RANK , Animais , Células da Medula Óssea , Camundongos , Osteoblastos , Osteogênese , Ligante RANK/farmacologia
4.
Life Sci Alliance ; 5(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181633

RESUMO

The processing of type I procollagen is essential for fibril formation; however, the steps involved remain controversial. We constructed a live cell imaging system by inserting fluorescent proteins into type I pre-procollagen α1. Based on live imaging and immunostaining, the C-propeptide is intracellularly cleaved at the perinuclear region, including the endoplasmic reticulum, and subsequently accumulates at the upside of the cell. The N-propeptide is also intracellularly cleaved, but is transported with the repeating structure domain of collagen into the extracellular region. This system makes it possible to detect relative increases and decreases in collagen secretion in a high-throughput manner by assaying fluorescence in the culture medium, and revealed that the rate-limiting step for collagen secretion occurs after the synthesis of procollagen. In the present study, we identified a defect in procollagen processing in activated hepatic stellate cells, which secrete aberrant collagen fibrils. The results obtained demonstrated the intracellular processing of type I procollagen, and revealed a link between dysfunctional processing and diseases such as hepatic fibrosis.


Assuntos
Colágeno , Pró-Colágeno , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Pró-Colágeno/metabolismo
5.
Front Cell Dev Biol ; 9: 667304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368123

RESUMO

Dendritic cells (DC) are professional antigen-presenting cells that develop from hematopoietic stem cells. Different DC subsets exist based on ontogeny, location and function, including the recently identified proinflammatory DC3 subset. DC3 have the prominent activity to polarize CD8+ T cells into CD8+ CD103+ tissue resident T cells. Here we describe human DC3 differentiated from induced pluripotent stem cells (iPS cells). iPS cell-derived DC3 have the gene expression and surface marker make-up of blood DC3 and polarize CD8+ T cells into CD8+ CD103+ tissue-resident memory T cells in vitro. To test the impact of malignant JAK2 V617F mutation on DC3, we differentiated patient-specific iPS cells with JAK2 V617Fhet and JAK2 V617Fhom mutations into JAK2 V617Fhet and JAK2 V617Fhom DC3. The JAK2 V617F mutation enhanced DC3 production and caused a bias toward erythrocytes and megakaryocytes. The patient-specific iPS cell-derived DC3 are expected to allow studying DC3 in human diseases and developing novel therapeutics.

6.
Tissue Eng Part A ; 27(17-18): 1160-1167, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33267675

RESUMO

Drug-induced liver toxicity remains a major cause of drug withdrawal from animal testing and human clinical trials. A functional liver culture model corresponding to the liver is urgently required; however, in previous liver models, it has proven difficult to stably maintain multiple liver functions. Previously reported fluid-based systems have some advantages for hepatocyte culture, but have insufficient liver-specific functions because they simply involve moving conventional hepatocyte cultures from a dish into a fluid-based system. Importantly, these cultures have no liver tissue-specific structures that construct liver-specific cellular polarities, such as apical, basolateral, and basal faces. In this study, we developed a fluid-based system for our liver tissue culture models. The liver tissues that were constructed in our originally designed fluid-based systems represent a tissue culture model for studying hepatic functions. Together, our findings show that by mimicking the structure of the liver in the body, our system effectively maintains multiple liver-specific functions. Impact statement A functional liver culture model corresponding to the liver is urgently required; however, in previous liver models, it has proven difficult to stably maintain multiple liver functions. In this study, we developed a fluid-based system for our liver tissue culture models. The liver tissues that were constructed in our originally designed fluid-based systems represent a tissue culture model for studying hepatic functions. Together, our findings show that by mimicking the structure of the liver in the body, our system effectively maintains multiple liver-specific functions.


Assuntos
Hepatócitos , Preparações Farmacêuticas , Animais , Polaridade Celular , Endotélio , Humanos , Fígado
7.
Biochem Biophys Res Commun ; 533(4): 983-987, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008586

RESUMO

JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system, in immunocompromised patients. Although PML used to be rare, recently the incidence of PML has risen due to an increase in immunosuppressive therapy. An in vitro JCPyV infection system could be used for anti-drug screening and investigation of tropism changes, but study of JCPyV in vitro has been limited due to the difficulty of efficiently propagating the virus in cultured cells. PML-type JCPyV efficiently propagates in primary human fetal and progenitor cell-derived astrocytes, but the preparation of cells from human fetuses is associated with severe ethical problems. In this study, human iPS cell-derived astrocytes were exposed to PML-type JCPyV. Infection, replication, and VP1 and T antigens of JCPyV were detected and confirmed in this culture. The non-coding control region (NCCR) of M1-IMRb was conserved in infected cells without point mutations. In addition, PML-type JCPyV genomic DNA in infected cells was detected as a single band of approximately 5.1 kbp, with no deletions. This is the first demonstration that human iPS cell-derived astrocytes efficiently support replication of PML-type JCPyV without production of defective interfering particles. These findings indicated that a culture system using human iPS cell-derived astrocyte would be useful for studies of PML, especially for screening anti-JCPyV drugs.


Assuntos
Astrócitos/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Vírus JC/fisiologia , Leucoencefalopatia Multifocal Progressiva/virologia , Animais , Antígenos Virais/biossíntese , Antígenos Virais de Tumores/biossíntese , Astrócitos/patologia , Células COS , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/imunologia , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , DNA Viral/genética , Genoma Viral , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Vírus JC/genética , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/etiologia , Leucoencefalopatia Multifocal Progressiva/patologia , Células-Tronco Neurais/patologia , Cultura de Vírus/métodos , Replicação Viral
8.
Genes Cells ; 25(4): 257-269, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012396

RESUMO

Most physiological changes follow a daily cycle in animals because their circadian rhythm is adjusted to and synchronized with sunlight. In particular, the circadian rhythm affects liver functions, including pharmacokinetics and metabolism. The influence of circadian rhythm has not been included in hepatotoxicity assays used in drug discovery and development. In this study, the contribution of circadian rhythm was investigated in acetaminophen-induced hepatotoxicity in mice and primary cultured hepatocytes. Hepatotoxicity was induced via the intraperitoneal administration of acetaminophen to a greater extent at night than during the day in mice. The sensitivity of acetaminophen-induced hepatotoxicity was consistent with the expression levels of acetaminophen-metabolizing enzyme and circadian genes. The host-derived circadian rhythm was still evident in the primary cultured hepatocytes within a day after their isolation from the liver. Primary cultured hepatocytes isolated at night were significantly more sensitive to acetaminophen than those isolated during the day. The sensitivity toward acetaminophen-induced hepatotoxicity depended on the circadian rhythm of the expression of acetaminophen-metabolizing genes and intracellular glutathione levels in primary cultured hepatocytes. These results obtained from cultured cells correspond to those in mice, suggesting that the timing of hepatocyte isolation is important when investigating drug metabolism and toxicity tests in culture.


Assuntos
Acetaminofen/toxicidade , Separação Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ritmo Circadiano , Hepatócitos/efeitos dos fármacos , Acetaminofen/administração & dosagem , Animais , Células Cultivadas , Hepatócitos/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fatores de Tempo
9.
Arch Microbiol ; 202(1): 105-114, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31485711

RESUMO

Escherichia coli MazF is a toxin protein that cleaves RNA at ACA sequences. Its activation has been thought to cause growth inhibition, primarily through indiscriminate cleavage of RNA. To investigate responses following MazF activation, transcriptomic profiles of mazF-overexpressing and non-overexpressing E. coli K12 cells were compared. Analyses of differentially expressed genes demonstrated that the presence and the number of ACA trimers in RNA was unrelated to cellular RNA levels. Mapping differentially expressed genes onto the chromosome identified two chromosomal segments in which upregulated genes formed clusters, and these segments were absent in the chromosomes of E. coli strains other than K12. These results suggest that MazF regulates selective, rather than indiscriminate, categories of genes, and is involved in the regulation of horizontally acquired genes. We conclude that the primary role of MazF is not only cleaving RNA indiscriminately but also generating a specific cellular state.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , RNA/genética , Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , RNA/química
10.
Biochem Biophys Res Commun ; 522(3): 580-584, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784088

RESUMO

Since ancient times, Corbicula extract has been believed in Japan to have hepatoprotective effects, but it remains unclear whether these claims are true, and if so, which component is responsible for hepatoprotection. In this study, we showed that Corbicula extract exerted a protective effect against liver damage. Recent work identified acorbine (ß-alanyl-ornithyl-ornithine), a novel tripeptide containing non-proteinogenic amino acids, in the extract of Corbicula japonica. Synthesized acorbine cured alcohol-induced liver damage in mice. In addition, acorbine purified from Corbicula extract exerted a protective effect against alcohol-induced hepatotoxicity in a culture liver model derived from mouse ES/iPS cells. Thus, acorbine is one of the components of Corbicula extract that protects hepatocytes against ethanol-induced death.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Corbicula/química , Peptídeos/uso terapêutico , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Morte Celular/efeitos dos fármacos , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Citoproteção/efeitos dos fármacos , Etanol/efeitos adversos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Camundongos Endogâmicos C57BL , Peptídeos/química , Extratos Vegetais/química , Substâncias Protetoras/química
11.
Xenotransplantation ; 26(1): e12468, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30375053

RESUMO

The ultimate goal of regenerative medicine is the transplantation of a target organ generated by the patient's own cells. Recently, a method of organ generation using pluripotent stem cells (PSCs) and blastocyst complementation was reported. This approach is based on chimeric animal generation using an early embryo and PSCs, and the contribution of PSCs to the target organ is key to the method's success. However, the contribution rate of PSCs in target organs generated by different chimeric animal generation methods remains unknown. In this study, we used 8-cell embryo aggregation, 8-cell embryo injection, and blastocyst injection to generate interspecies chimeric mice using rat embryonic stem (ES) cells and then investigated the differences in the contribution rate of the rat ES cells. The rate of chimeric mouse generation was the highest using blastocyst injection, followed in order by 8-cell embryo injection and 8-cell embryo aggregation. However, the contribution rate of rat ES cells was the highest in chimeric neonates generated by 8-cell embryo injection, and the difference was statistically significant in the liver. Live functionality was confirmed by analyzing the expression of rat hepatocyte-derived drug-metabolizing enzyme. Collectively, these findings indicate that the 8-cell embryo injection method is the most suitable for generation of PSC-derived organs via chimeric animal generation, particularly for the liver.


Assuntos
Blastocisto/citologia , Agregação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Transplante Heterólogo , Animais , Diferenciação Celular/fisiologia , Feminino , Camundongos , Ratos
12.
J Biosci Bioeng ; 125(3): 353-358, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29146529

RESUMO

Exposure to UV radiation to human skin up-regulates the synthesis of matrix metalloproteinase (MMP) family. Gelatinases are member of MMPs which have been suggested to play an important role in photoaging such as wrinkle formation. To inhibit gelatinase activity is regarded to be very important to keep healthy skin and to protect wrinkle formation. On the other hand, anti-photoaging agents are expected to be derived from natural resources, especially plants. Plant extracts having gelatinase-inhibitory effect that might be used as safe anti-photoaging ingredient were widely screened. An extract of rhizomes of Curcuma longa L. showed inhibitory effect of gelatinase activity. Curcuminoids and slight amount of compound, 6,11-dihydroxy-3-(4-hydroxy-3-mthoxyphenethyl)-7-[(E)-4-(4-hydroxy-3-methoxyphenyl)-2-oxo-3-butenyl]-10-methoxy-2-oxabicyclo[6.3.1.]dodeca-1(11),8(12),9-trien-5-yl (E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate (curcuminoid D) were isolated as the gelatinase-inhibitory components from methanol extract of rhizomes. The structure of curcuminoid D was determined by means of spectral data including 1H- and 13C-NMR, and IR. Curcumin exerted the enhancing effect on deposition of basement membrane component at dermal-epidermal junction in skin equivalent model. Topical application of cream containing turmeric extract significantly improved facial skin elasticity and decreased the number of gelatinase-positive stratum corneum clusters in human facial skins. These results indicated that turmeric is an effective ingredient to improve skin condition and to prevent skin from photoaging by suppressing activation of gelatinase chronically caused by UV.


Assuntos
Curcuma/química , Gelatinases/antagonistas & inibidores , Extratos Vegetais/farmacologia , Rizoma/química , Pele/efeitos dos fármacos , Células Cultivadas , Curcumina/farmacologia , Humanos , Recém-Nascido , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Masculino , Metanol/farmacologia , Substâncias Protetoras/farmacologia , Pele/efeitos da radiação , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
13.
Oncotarget ; 8(33): 53899-53915, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903311

RESUMO

Directed differentiation of human stem cells including induced pluripotent stem cells into hepatic cells potentially leads to acquired susceptibility to hepatitis C virus (HCV) infection. However, cellular determinants that change their expression during cell reprogramming or hepatic differentiation and are pivotal for supporting the HCV life cycle remain unclear. In this study, by introducing a set of reprogramming factors, we established HuH-7-derived oval-like cell lines, Hdo-17 and -23, which possess features of bipotential liver precursors. Upon induction of hepatocyte differentiation, expression of mature hepatocyte markers and hepatoblast markers in cells increased and decreased, respectively. In contrast, in response to cholangiocytic differentiation induction, gene expression of epithelium markers increased and cells formed round cysts with a central luminal space. Hdo cells lost their susceptibility to HCV infection and viral RNA replication. Hepatic differentiation of Hdo cells potentially led to recovery of permissiveness to HCV RNA replication. Gene expression profiling showed that most host-cell factors known to be involved in the HCV life cycle, except CD81, are expressed in Hdo cells comparable to HuH-7 cells. HCV pseudoparticle infectivity was significantly but partially recovered by ectopic expression of CD81, suggesting possible involvement of additional unidentified factors in HCV entry. In addition, we identified miR200a-3p, which is highly expressed in Hdo cells and stem cells but poorly expressed in differentiated cells and mature hepatocytes, as a novel negative regulator of HCV replication. In conclusion, our results showed that epigenetic reprogramming of human hepatoma cells potentially changes their permissivity to HCV.

14.
J Toxicol Sci ; 42(4): 445-454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717103

RESUMO

Recently, a novel culture system consisting of primary hepatocytes structured over a network of endothelial cells on the Engelbreth-Holm-Swarm (EHS) gel has been reported. This in vitro liver model on the EHS gel (IVLEHS) has been shown to maintain the expression of hepatic genes and their functional activity. Moreover, the IVLEHS was more sensitive to xenobiotics than hepatocyte monocultures, suggesting the potential utility of this culture system for compound hepatotoxicity screening. However, the effect of this three-dimensional structure formation on the cellular metabolic profile of hepatocytes in the IVLEHS is not well understood. To address this concern, we performed metabolome analysis using capillary electrophoresis-time of flight mass spectrometry. Between the IVLEHS and mono-cultured hepatocytes on the EHS gel, there was no significant difference in the levels of metabolites of the urea cycle and the tricarboxylic acid cycle, essential amino acids, and adenylate energy charge (AEC) which is an important indicator of cellular energy status. On the other hand, acetaminophen-dependent decrease of the AEC in the IVLEHS was greater than that in the monoculture, suggesting the higher sensitivity of IVLEHS to acetaminophen-induced hepatotoxicity which is caused by metabolic activation of this drug. Further analysis showed that the levels of taurocholate, one of the major conjugated bile acids, were higher in the IVLEHS than in the monoculture. Considering that the construction of the IVLEHS did not seem to disturb the major cellular metabolism, our findings would strengthen the concept that IVLEHS would have beneficial effects on the maintenance of hepatic functions.


Assuntos
Acetaminofen/toxicidade , Hepatócitos , Células Endoteliais da Veia Umbilical Humana , Fígado , Metabolômica , Modelos Anatômicos , Testes de Toxicidade/métodos , Animais , Eletroforese Capilar , Metabolismo Energético/efeitos dos fármacos , Géis , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/metabolismo , Espectrometria de Massas , Metabolômica/métodos , Camundongos Endogâmicos BALB C , Ácido Taurocólico/metabolismo
15.
Exp Anim ; 66(4): 293-302, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28515388

RESUMO

Nitric oxide (NO), generated from L-arginine by three different isoforms of nitric oxide synthase (NOS), is a pleiotropic factor to regulate physiological functions in almost every organ and tissue. Each knockout mouse of iNOS or eNOS has been used to suggest that NO has a crucial role in liver regeneration after partial hepatectomy (PH), for NO may inhibit caspase 3 activity and is required for EGFR signaling. In previous reports, defective mitochondrial ß-oxidation was observed in eNOS KO mice, and hepatic steatosis was often correlated to deficient liver regeneration, so we focused on metabolic perspective and hypothesized that NO depletion in PH mice would affect hepatocytic lipolysis and impair hepatocytes proliferation. We inhibited all NOS isoforms by administrating L-NG-nitroarginine methyl ester (L-NAME) to PH mice, and hepatocyte DNA synthesis was severely inhibited at 40-44 h post PH in L-NAME (+) group. IL-6 was robustly secreted into circulating blood in L-NAME (-) group, but not in L-NAME (+) group. Down-regulation of carnitine palmytoyltransferase 1A, massive lipid accumulation and elevated endoplasmic reticulum (ER) stress relative genes expression level were observed in L-NAME (+) group mouse liver. The expression level of C/EBP homologous protein, a mediator of ER stress induced apoptosis, significantly increased in L-NAME (+) group. Our findings suggest the lack of NO affected IL-6 induction and hepatocyte lipolysis after PH, consequently leading to excessive hepatic lipid accumulation, elevated ER stress and impaired hepatocyte proliferation.


Assuntos
Hepatectomia , Hepatócitos/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos , Regeneração Hepática/fisiologia , Óxido Nítrico/fisiologia , Animais , Proliferação de Células , Células Cultivadas , DNA/biossíntese , Estresse do Retículo Endoplasmático , Hepatócitos/citologia , Lipólise , Masculino , Camundongos Endogâmicos BALB C
16.
J Phys Chem B ; 121(12): 2603-2613, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28260388

RESUMO

Oligomer species of amyloid ß (Aß) peptides are intensively investigated because of their relevance to Alzheimer's disease (AD), and a stable oligomer will be a cause of AD. In this article, we investigate the structural stability of two representative Aß1-40 oligomers, which are with and without the ß-sheet structure, denoted by ß and non-ß oligomers, respectively, using optimized ultrasonic irradiation (OUI). Recent studies reveal that OUI significantly accelerates the fibril formation in Aß1-40 monomers; it is capable of transforming any unstable oligomers into fibrils (the dead-end products) in a short time. First, we find that ß oligomers can be produced under high-speed stirring agitation; their ß-sheet structures are evaluated by the circular-dichroism spectrum measurement, by the immunoassay using the fibril-specific OC antibody, and by the seeding experiment, showing identical characteristics to those formed in previous reports. Second, we form non-ß oligomers in a high-concentration NaCl solution and confirm that they include no ß-sheet structure, and they are recognized by the oligomer-specific A11 antibody. Furthermore, we confirm the neurotoxicity of the two types of oligomers using the neural tissue derived from mouse embryonic stem cells. We apply the OUI agitation to the ß and non-ß oligomers. The non-ß oligomers are transformed into the fibrils, indicating that they are intermediate species in the fibrillation pathway. However, the ß oligomers are surprisingly unaffected by OUI, indicating their high thermodynamic stability. We conclude that the ß oligomers should be the independent dead-end products of another pathway, different from the fibrillation pathway.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Estabilidade Proteica/efeitos da radiação , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos da radiação , Ratos , Ondas Ultrassônicas
17.
Eur J Pharmacol ; 795: 58-65, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27915044

RESUMO

It has been elucidated that mineralocorticoid receptor antagonists reduce mortality in patients with congestive heart failure and post-acute myocardial infarction. A direct inhibition of aldosterone synthase (CYP11B2) is also expected to have therapeutic benefits equal in quality to mineralocorticoid receptor antagonists in terms of reducing mineralocorticoid receptor signaling. Therefore, we have screened our chemical libraries and identified a novel and potent aldosterone synthase inhibitor, 2,2,2-trifluoro-1-{4-[(4-fluorophenyl)amino]pyrimidin-5-y}-1-[1-(methylsulfonyl)piperidin-4-yl]ethanol (compound 1), by lead optimization. Pharmacological properties of compound 1 were examined in in vitro cell-based assays and an in vivo mouse model of pressure-overload hypertrophy by transverse aortic constriction (TAC). Compound 1 showed potent CYP11B2 inhibition against human and mouse enzymes (IC50; 0.003µM and 0.096µM, respectively) in a cell-based assay. The oral administration of 0.06% compound 1 in the food mixture of a mouse TAC model significantly reduced the plasma aldosterone level and ameliorated mortality rate. This study is the first to demonstrate that a CYP11B2 inhibitor improved survival rates of heart failure induced by pressure-overload in mice. The treatment of 0.06% compound 1 did not elevate plasma potassium level in this model, although further evaluation of hyperkalemia is needed. These results suggest that compound 1 can be developed as a promising oral CYP11B2 inhibitor for pharmaceutical applications. Compound 1 could also be a useful compound for clarifying the role of aldosterone in cardiac hypertrophy.


Assuntos
Citocromo P-450 CYP11B2/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/mortalidade , Pressão/efeitos adversos , Aldosterona/biossíntese , Animais , Cardiomegalia/complicações , Cardiomegalia/tratamento farmacológico , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Células HEK293 , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
18.
Biochem Biophys Res Commun ; 470(4): 917-23, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26820538

RESUMO

The mouse embryonic yolk sac is an extraembryonic membrane that consists of a visceral yolk sac (VYS) and parietal yolk sac (PYS), and functions in hematopoietic-circulation in the fetal stage. The present study was undertaken to examine the normal development of both murine VYS and PYS tissues using various molecular markers, and to establish a novel VYS cell culture system in vitro for analyzing differentiation potentials of VYS cells. RT-PCR and immunohistochemical analyses of gene expression in VYS and PYS tissues during development revealed several useful markers for their identification: HNF1ß, HNF4α, Cdh1 (E-cadherin), Krt8 and Krt18 for VYS epithelial cells, and Stra6, Snail1, Thbd and vimentin for PYS cells. PYS cells exhibited mesenchymal characteristics in gene expression and morphology. When VYS cells at 11.5 days of gestation were cultured in vitro for 7 days, the number of HNF1ß-, HNF4α-, E-cadherin- and cytokeratin-positive VYS epithelial cells was significantly reduced and, instead, Stra6-and vimentin-positive PYS-like cells increased with culture. RT-PCR analyses also demonstrated that gene expression of VYS markers decreased, whereas that of PYS markers increased in the primary culture of VYS cells. These data indicate that VYS epithelial cells rapidly transdifferentiate into PYS cells having mesenchymal characteristics in vitro, which may provide a culture system suitable for studying molecular mechanisms of VYS transdifferentiation into PYS cells and also epithelial-mesenchymal transition.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Células-Tronco Mesenquimais/citologia , Vísceras/citologia , Saco Vitelino/citologia , Animais , Células Cultivadas , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Vísceras/fisiologia , Saco Vitelino/fisiologia
19.
J Biosci Bioeng ; 118(1): 107-11, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24495926

RESUMO

The life cycle of viruses, from infection to budding, is dependent upon the physiological activity of the host cells, such as expression of cell surface proteins, activities of organelles and transcription factors and so on. Human hepatitis viruses exploit multiple hepatocyte pathways during their life cycle; however, primary hepatocytes dramatically lose function and die when cultured as a monolayer in vitro. We previously reported the development of an in vitro liver model, IVL, consisting of endothelial networks and mouse primary hepatocytes. Hepatocytes cultured using the IVL achieved higher hepatic gene expression and drug sensitivity. In this study, human IVLs were constructed by using the human hepatoma cell lines, Hep G2 and HuH-7, and human umbilical vein endothelial cell networks on Engelbreth-Holm-Swarm gels. In order that these human IVLs could serve as in vitro models of human viral hepatitis, these human hepatoma cell lines were stably transfected with the hepatitis B virus (HBV) genome. The levels of HBV markers observed in the supernatant of the IVL cultures were significantly increased as compared to those obtained in transfected monocultures. Furthermore, the hepatocytes in the human IVL cultures became polarized, leading to efficient HBV replication and release in vitro. This finding suggests that the IVL culture system could be an effective model for HBV replication.


Assuntos
Endotélio Vascular/citologia , Vírus da Hepatite B/fisiologia , Fígado/virologia , Replicação Viral , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais/citologia , Vírus da Hepatite B/genética , Hepatócitos/virologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Neoplasias Hepáticas , Camundongos , Modelos Biológicos , Transfecção
20.
Biomaterials ; 35(8): 2471-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24373421

RESUMO

Directional cellular migrations as a chemotactic response to spatially inhomogeneous growth factor stimulation play an important role in establishing physiological mechanisms and pathological events in cells. We developed epidermal growth factor (EGF)-immobilized microbeads by photoreaction and evaluated its local stimulatory effects on the dynamic chemotactic motility of fibroblasts. The local stimulation resulted in global activation of ERK 1/2 and directionality of cellular migration. The cellular migration by stimulation using 3-µm diameter EGF-immobilized microbeads persisted for a longer time, were involved a wider field and their number were further increased with stimulation. This effective technique allows cellular migration and biochemical analyses that will help elucidate the mechanisms involved in signal transduction by spatially inhomogeneous stimulation of the growth factor.


Assuntos
Quimiotaxia/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Fibroblastos/efeitos dos fármacos , Microesferas , Animais , Immunoblotting , Camundongos , Transdução de Sinais , Células Swiss 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA