Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 31: 101122, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920238

RESUMO

Oligonucleotide therapeutics offer great promise in the treatment of previously untreatable neurodegenerative disorders; however, there are some challenges to overcome in pre-clinical studies. (1) They carry a well-established dose-related acute neurotoxicity at the time of administration. (2) Repeated administration into the cerebrospinal fluid may be required for long-term therapeutic effect. Modifying oligonucleotide formulation has been postulated to prevent acute toxicity, but a sensitive and quantitative way to track seizure activity in pre-clinical studies is lacking. The use of intracerebroventricular (i.c.v.) catheters offers a solution for repeated dosing; however, fixation techniques in large animal models are not standardized and are not reliable. Here we describe a novel surgical technique in a sheep model for i.c.v. delivery of neurotherapeutics based on the fixation of the i.c.v. catheter with a 3D-printed anchorage system composed of plastic and ceramic parts, compatible with magnetic resonance imaging, computed tomography, and electroencephalography (EEG). Our technique allowed tracking electrical brain activity in awake animals via EEG and video recording during and for the 24-h period after administration of a novel oligonucleotide in sheep. Its anchoring efficiency was demonstrated for at least 2 months and will be tested for up to a year in ongoing studies.

2.
J Huntingtons Dis ; 12(3): 201-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661892

RESUMO

BACKGROUND: Synaptic changes occur early in patients with Huntington's disease (HD) and in mouse models of HD. An analysis of synaptic changes in HD transgenic sheep (OVT73) is fitting since they have been shown to have some phenotypes. They also have larger brains, longer lifespan, and greater motor and cognitive capacities more aligned with humans, and can provide abundant biofluids for in vivo monitoring of therapeutic interventions. OBJECTIVE: The objective of this study was to determine if there were differences between 5- and 10-year-old OVT73 and wild-type (WT) sheep in levels of synaptic proteins in brain and in neurofilament light chain (NfL) in cerebrospinal fluid (CSF) and plasma. METHODS: Mutant huntingtin (mHTT) and other proteins were measured by western blot assay in synaptosomes prepared from caudate, motor, and piriform cortex in 5-year-old and caudate, putamen, motor; and piriform cortex in 10-year-old WT and OVT73 sheep. Levels of NfL, a biomarker for neuronal damage increased in many neurological disorders including HD, were examined in CSF and plasma samples from 10-year-old WT and OVT73 sheep using the Simoa NfL Advantage kit. RESULTS: Western blot analysis showed mHTT protein expression in synaptosomes from OVT73 sheep was  23% of endogenous sheep HTT levels at both ages. Significant changes were detected in brain levels of PDE10A, SCN4B, DARPP32, calmodulin, SNAP25, PSD95, VGLUT 1, VAMP1, and Na+/K+-ATPase, which depended on age and brain region. There was no difference in NfL levels in CSF and plasma in OVT73 sheep compared to age-matched WT sheep. CONCLUSIONS: These results show that synaptic changes occur in brain of 5- and 10-year-old OVT73 sheep, but levels of NfL in biofluids are unaffected. Altogether, the data support a prodromal disease state in OVT73 sheep that involves the caudate, putamen and cortex.

3.
J Huntingtons Dis ; 11(4): 391-406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189602

RESUMO

BACKGROUND: Huntington's disease (HD) is a fatal neurodegenerative autosomal dominant disorder with prevalence of 1 : 20000 that has no effective treatment to date. Translatability of candidate therapeutics could be enhanced by additional testing in large animal models because of similarities in brain anatomy, size, and immunophysiology. These features enable realistic pre-clinical studies of biodistribution, efficacy, and toxicity. OBJECTIVE AND METHODS: Here we non-invasively characterized alterations in brain white matter microstructure, neurochemistry, neurological status, and mutant Huntingtin protein (mHTT) levels in cerebrospinal fluid (CSF) of aged OVT73 HD sheep. RESULTS: Similar to HD patients, CSF mHTT differentiates HD from normal sheep. Our results are indicative of a decline in neurological status, and alterations in brain white matter diffusion and spectroscopy metric that are more severe in aged female HD sheep. Longitudinal analysis of aged female HD sheep suggests that the decline is detectable over the course of a year. In line with reports of HD human studies, white matter alterations in corpus callosum correlates with a decline in gait of HD sheep. Moreover, alterations in the occipital cortex white matter correlates with a decline in clinical rating score. In addition, the marker of energy metabolism in striatum of aged HD sheep, shows a correlation with decline of clinical rating score and eye coordination. CONCLUSION: This data suggests that OVT73 HD sheep can serve as a pre-manifest large animal model of HD providing a platform for pre-clinical testing of HD therapeutics and non-invasive tracking of the efficacy of the therapy.


Assuntos
Doença de Huntington , Substância Branca , Animais , Humanos , Feminino , Ovinos , Idoso , Doença de Huntington/metabolismo , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Proteínas Mutantes/metabolismo
4.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935646

RESUMO

siRNAs comprise a class of drugs that can be programmed to silence any target gene. Chemical engineering efforts resulted in development of divalent siRNAs (di-siRNAs), which support robust and long-term efficacy in rodent and nonhuman primate brains upon direct cerebrospinal fluid (CSF) administration. Oligonucleotide distribution in the CNS is nonuniform, limiting clinical applications. The contribution of CSF infusion placement and dosing regimen on relative accumulation, specifically in the context of large animals, is not well characterized. To our knowledge, we report the first systemic, comparative study investigating the effects of 3 routes of administration - intrastriatal (i.s.), i.c.v., and intrathecal catheter to the cisterna magna (ITC) - and 2 dosing regimens - single and repetitive via an implanted reservoir device - on di-siRNA distribution and accumulation in the CNS of Dorset sheep. CSF injections (i.c.v. and ITC) resulted in similar distribution and accumulation across brain regions. Repeated dosing increased homogeneity, with greater relative deep brain accumulation. Conversely, i.s. administration supported region-specific delivery. These results suggest that dosing regimen, not CSF infusion placement, may equalize siRNA accumulation and efficacy throughout the brain. These findings inform the planning and execution of preclinical and clinical studies using siRNA therapeutics in the CNS.


Assuntos
Terapia Genética/métodos , RNA Interferente Pequeno/administração & dosagem , Animais , Vias de Administração de Medicamentos , Ovinos
5.
Mol Ther Methods Clin Dev ; 23: 128-134, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703836

RESUMO

Transformative results of adeno-associated virus (AAV) gene therapy in patients with spinal muscular atrophy and Leber's congenital amaurosis led to approval of the first two AAV products in the United States to treat these diseases. These extraordinary results led to a dramatic increase in the number and type of AAV gene-therapy programs. However, the field lacks non-invasive means to assess levels and duration of therapeutic protein function in patients. Here, we describe a new magnetic resonance imaging (MRI) technology for real-time reporting of gene-therapy products in the living animal in the form of an MRI probe that is activated in the presence of therapeutic protein expression. For the first time, we show reliable tracking of enzyme expression after a now in-human clinical trial AAV gene therapy (ClinicalTrials.gov: NTC03952637) encoding lysosomal acid beta-galactosidase (ßgal) using a self-immolative ßgal-responsive MRI probe. MRI enhancement in AAV-treated enzyme-deficient mice (GLB-1-/-) correlates with ßgal activity in central nervous system and peripheral organs after intracranial or intravenous AAV gene therapy, respectively. With >1,800 gene therapies in phase I/II clinical trials (ClinicalTrials.gov), development of a non-invasive method to track gene expression over time in patients is crucial to the future of the gene-therapy field.

6.
Mol Genet Metab ; 134(1-2): 164-174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456134

RESUMO

Tay-Sachs disease (TSD) is a fatal neurodegenerative disease caused by a deficiency of the enzyme ß-N-acetylhexosaminidase A (HexA). TSD naturally occurs in Jacob sheep is the only experimental model of TSD. TSD in sheep recapitulates neurologic features similar to juvenile onset and late onset TSD patients. Due to the paucity of human literature on pathology of TSD, a better natural history in the sheep TSD brain, which is on the same order of magnitude as a child's, is necessary for evaluating therapy and characterizing the pathological events that occur. To provide clinicians and researchers with a clearer understanding of longitudinal pathology in patients, we compare spectrum of clinical signs and brain pathology in mildly symptomatic (3-months), moderately symptomatic (6-months), or severely affected TSD sheep (humane endpoint at ~9-months of age). Increased GM2 ganglioside in the CSF of TSD sheep and a TSD specific biomarker on MRS (taurine) correlate with disease severity. Microglial activation and reactive astrocytes were observed globally on histopathology in TSD sheep with a widespread reduction in oligodendrocyte density. Myelination is reduced primarily in the forebrain illustrated by loss of white matter on MRI. GM2 and GM3 ganglioside were increased and distributed differently in various tissues. The study of TSD in the sheep model provides a natural history to shed light on the pathophysiology of TSD, which is of utmost importance due to novel therapeutics being assessed in human patients.


Assuntos
Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ovinos , Doença de Tay-Sachs/fisiopatologia , Doença de Tay-Sachs/veterinária , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doença de Tay-Sachs/genética
7.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32592687

RESUMO

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Doença de Sandhoff/terapia , Animais , Gerenciamento Clínico , Modelos Animais de Doenças , Gangliosídeo G(M2)/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Camundongos , Mutação , Doença de Sandhoff/genética , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/terapia , Transgenes , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
8.
Hum Gene Ther ; 31(11-12): 617-625, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363942

RESUMO

Thalamic infusion of adeno-associated viral (AAV) vectors has been shown to have therapeutic effects in neuronopathic lysosomal storage diseases. Preclinical studies in sheep model of Tay-Sachs disease demonstrated that bilateral thalamic injections of AAV gene therapy are required for maximal benefit. Translation of thalamic injection to patients carries risks in that (1) it has never been done in humans, and (2) dosing scale-up based on brain weight from animals to humans requires injection of larger volumes. To increase the safety margin of this infusion, a flexible cannula was selected to enable simultaneous bilateral thalamic infusion in infants while monitoring by imaging and/or to enable awake infusions for injection of large volumes at low infusion rates. In this study, we tested various infusion volumes (200-800 µL) and rates (0.5-5 µL/min) to determine the maximum tolerated combination of injection parameters. Animals were followed for ∼1 month postinjection with magnetic resonance imaging (MRI) performed at 14 and 28 days. T1-weighted MRI was used to quantify thalamic damage followed by histopathological assessment of the brain. Trends in data show that infusion volumes of 800 µL (2 × the volume required in sheep based on thalamic size) resulted in larger lesions than lower volumes, where the long infusion times (between 13 and 26 h) could have contributed to the generation of larger lesions. The target volume (400 µL, projected to be sufficient to cover most of the sheep thalamus) created the smallest lesion size. Cannula placement alone did result in damage, but this is likely associated with an inherent limitation of its use in a small brain due to the length of the distal rigid portion and lack of stable fixation. An injection rate of 5 µL/min at a volume ∼1/3 of the thalamus (400-600 µL) appears to be well tolerated in sheep both clinically and histopathologically.


Assuntos
Terapia Genética/métodos , Injeções/métodos , Doença de Tay-Sachs/terapia , Tálamo/patologia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Ovinos , Doença de Tay-Sachs/genética
9.
Front Vet Sci ; 7: 80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219101

RESUMO

Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.

10.
FASEB J ; 34(1): 1198-1210, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914655

RESUMO

Early pro-inflammatory signaling in the endocrine pancreas involves activation of NF-κB, which is believed to be important for determining the ultimate fate of ß-cells and hence progression of type 1 diabetes (T1D). Thus, early non-invasive detection of NF-κB in pancreatic islets may serve as a potential strategy for monitoring early changes in pancreatic endocrine cells eventually leading to T1D. We investigated the feasibility of optical imaging of NF-κB transcription factor activation induced by low-dose streptozocin (LD-STZ) treatment in the immunocompetent SKH1 mouse model of early stage diabetes. In this model, we showed that the levels of NF-κB may be visualized and measured by fluorescence intensity of specific near-infrared (NIR) fluorophore-labeled oligodeoxyribonucleotide duplex (ODND) probes. In addition, NF-κB activation following LD-STZ treatment was validated using immunofluorescence and transgenic animals expressing NF-κB inducible imaging reporter. We showed that LD-STZ-treated SKH1 mice had significantly higher (2-3 times, P < .01) specific NIR FI in the nuclei and cytoplasm of islets cells than in non-treated control mice and this finding was corroborated by immunoblotting and electrophoretic mobility shift assays. Finally, using semi-quantitative confocal analysis of non-fixed pancreatic islet microscopy we demonstrated that ODND probes may be used to distinguish between the islets with high levels of NF-κB transcription factor and control islet cells.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , NF-kappa B/metabolismo , Animais , Núcleo Celular/patologia , Citoplasma/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Corantes Fluorescentes/farmacologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , NF-kappa B/genética , Oligodesoxirribonucleotídeos/farmacologia
11.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813800

RESUMO

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Assuntos
Cisterna Magna/metabolismo , Dependovirus/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Transdução Genética , Animais , Catéteres , Sistema Nervoso Central/metabolismo , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Injeções Espinhais , Imageamento por Ressonância Magnética , Modelos Animais , Ovinos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Transgenes , Gravação em Vídeo
12.
Am J Physiol Cell Physiol ; 306(8): C768-78, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24573084

RESUMO

Diabetes-induced cardiomyopathy is characterized by cardiac remodeling, fibrosis, and endothelial dysfunction, with no treatment options currently available. Hyperglycemic memory by endothelial cells may play the key role in microvascular complications in diabetes, providing a potential target for therapeutic approaches. This study tested the hypothesis that a proangiogenic environment can augment diabetes-induced deficiencies in endothelial cell angiogenic and biomechanical responses. Endothelial responses were quantified for two models of diabetic conditions: 1) an in vitro acute and chronic hyperglycemia where normal cardiac endothelial cells were exposed to high-glucose media, and 2) an in vivo chronic diabetes model where the cells were isolated from rats with type I streptozotocin-induced diabetes. Capillary morphogenesis, VEGF and nitric oxide expression, cell morphology, orientation, proliferation, and apoptosis were determined for cells cultured on Matrigel or proangiogenic nanofiber hydrogel. The effects of biomechanical stimulation were assessed following cell exposure to uniaxial strain. The results demonstrate that diabetes alters cardiac endothelium angiogenic response, with differential effects of acute and chronic exposure to high-glucose conditions, consistent with the concept that endothelial cells may have a long-term "hyperglycemic memory" of the physiological environment in the body. Furthermore, endothelial cell exposure to strain significantly diminishes their angiogenic potential following strain application. Both diabetes and strain-associated deficiencies can be augmented in the proangiogenic nanofiber microenvironment. These findings may contribute to the development of novel approaches to reverse hyperglycemic memory of endothelium and enhance vascularization of the diabetic heart, where improved angiogenic and biomechanical responses can be the key factor to successful therapy.


Assuntos
Vasos Coronários/fisiologia , Diabetes Mellitus Experimental/metabolismo , Endotélio Vascular/fisiologia , Neovascularização Fisiológica/fisiologia , Animais , Apoptose/fisiologia , Fenômenos Biomecânicos , Proliferação de Células , Células Cultivadas , Meios de Cultura , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Óxido Nítrico/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J R Soc Interface ; 10(78): 20120548, 2013 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22993248

RESUMO

Low-amplitude electric field (EF) is an important component of wound-healing response and can promote vascular tissue repair; however, the mechanisms of action on endothelium remain unclear. We hypothesized that physiological amplitude EF regulates angiogenic response of microvascular endothelial cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. A custom set-up allowed non-thermal application of EF of high (7.5 GHz) and low (60 Hz) frequency. Cell responses following up to 24 h of EF exposure, including proliferation and apoptosis, capillary morphogenesis, vascular endothelial growth factor (VEGF) expression and MAPK pathways activation were quantified. A db/db mouse model of diabetic wound healing was used for in vivo validation. High-frequency EF enhanced capillary morphogenesis, VEGF release, MEK-cRaf complex formation, MEK and ERK phosphorylation, whereas no MAPK/JNK and MAPK/p38 pathways activation was observed. The endothelial response to EF did not require VEGF binding to VEGFR2 receptor. EF-induced MEK phosphorylation was reversed in the presence of MEK and Ca(2+) inhibitors, reduced by endothelial nitric oxide synthase inhibition, and did not depend on PI3K pathway activation. The results provide evidence for a novel intracellular mechanism for EF regulation of endothelial angiogenic response via frequency-sensitive MAPK/ERK pathway activation, with important implications for EF-based therapies for vascular tissue regeneration.


Assuntos
Capilares/crescimento & desenvolvimento , Campos Eletromagnéticos , Sistema de Sinalização das MAP Quinases , Morfogênese , Neovascularização Fisiológica , Animais , Apoptose , Cálcio/metabolismo , Capilares/citologia , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , MAP Quinase Quinase 4/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/biossíntese
14.
PLoS One ; 7(5): e36840, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590623

RESUMO

Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca(2+)](i)) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca(2+)](i) homeostasis due to altered sarcoplasmic reticulum Ca(2+) ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca(2+) regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca(2+)](i) homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca(2+)](i) transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca(2+) ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca(2+)](i) sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Células Endoteliais/patologia , Feminino , Miocárdio/patologia , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA