Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383194

RESUMO

Shahryar city regions with various land uses had their outdoor air concentrations of PM2.5-bound PAHs determined. Totally, 32 samples were taken - eight samples from the industrial region air (IS), eight samples from the high-traffic urban regions air (HTS), eight samples from the air of commercial regions (CS), and eight samples from residential areas (RS), which were analyzed by GC-MS. According to the study's findings, in the outdoor air of IS, HTS, CS, and RS, there were mean Æ©PAHs concentrations of 23.25 ± 20.22, 38.88 ± 26.53, 6.97 ± 4.26, and 4.48 ± 3.13 ng/m3, respectively. As comparison to CS and RS, mean concentration of Æ©PAHs in samples from HTS and IS was substantially greater (p < 0.05). Using the Unmix.6 receptor model, sources of PAHs in the air of Shahryar were allocated. The model's results show that 42% of PAHs come from diesel vehicles and industrial activities, 36% from traffic and other transportation sources, and 22% from heating sources and coal burning. The carcinogenicity suffering resulting from exposure to PAHs was as follows: This value for children of the ingestion, inhalation pathways and dermal contact is (1.90 × 10-6-1.38 × 10-4), (5.5 × 10-11-2.67 × 10-9) and (2.36 × 10-6-1.72 × 10-4), respectively. Also, for adults were (1.47 × 10-6 - 1.07 × 10-4), (1.14 × 10-10 - 5.27 × 10-9) and (3.68 × 10-6- 2.87 × 10-4), respectively. In general, the analyzed region's carcinogenicity risk estimates fell within the range of acceptable limit.

2.
Environ Geochem Health ; 43(5): 1783-1797, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33098497

RESUMO

Tobacco smoke is known for releasing metals in indoor air of waterpipe/cigarette cafés. However, the worker exposure to metals, and its association with oxidative stress in these cafés are still unclear. To this end, 54 workers and 38 customers from waterpipe/cigarette cafés (the exposed group), 30 workers from non-smoking cafés (the control group 1 (CG_1)) and 32 individuals from the general population (the control group 2 (CG_2)) were selected and toenails samples were then taken from them. Our findings revealed a significant difference in terms of toenail-bounded metal levels between the exposure and control groups (CG_1 and CG_2) (Mann-Whitney U test, Pvalue < 0.05). This study has also indicated that "type of tobacco" could be considered as a predictor for toenail-bounded heavy metals. Furthermore, our research's results suggest that toenail-bounded heavy metals are positively and significantly correlated with urinary levels of 8- hydroxy-2'-deoxyguanosine (8-OHdG, as a biomarker for the degradation of deoxyribonucleic acid (DNA) oxidative stress). Therefore, it can be concluded that workers of waterpipe/cigarette cafés are at high risks of adverse health of DNA oxidative degradation.


Assuntos
Metais Pesados/análise , Nicotiana , Exposição Ocupacional/análise , Fumar Cachimbo de Água/efeitos adversos , 8-Hidroxi-2'-Desoxiguanosina/urina , Adulto , Poluição do Ar em Ambientes Fechados/efeitos adversos , Biomarcadores/urina , Feminino , Humanos , Irã (Geográfico) , Estilo de Vida , Masculino , Unhas/química , Estresse Oxidativo , Equipamento de Proteção Individual , Produtos do Tabaco
3.
Environ Geochem Health ; 42(11): 3641-3658, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424790

RESUMO

Indoor dust samples were collected from 42 microenvironments of residential buildings (RB, 15 samples), official buildings (OB, 10 samples), laboratory rooms (LR, 7 samples), and school classroom (SCR, 10 samples) in Bushehr, whereby the concentration of zinc, copper, lead, cadmium, nickel, and chromium was studied. The results of this study indicated that the mean concentrations of Zn, Cu, Pb, Cd, Cr, and Ni in the indoor dust samples were 567.18, 186.09, 209.01, 5.31, 143.20, and 57.09 mg/kg in RB, 1077.34, 539.67, 274.89, 8.12, 155.30, and 92.55 mg/kg in OB, 246.40, 149.56, 127.2, 1.96, 43.45, and 91.09 mg/kg in LR and 271.43, 189.84, 164.44, 3.06, 124.20, and 70.09 mg/kg in SCR. The results of principal cluster analysis showed that the heavy metals in indoor environments were mostly originated from smoking tobacco and cigarette, traffic sources, old building materials, and building paint colors. The results of this study also revealed that the concentration of heavy metals in indoor dust had a negative and significant relationship (P value < 0.05 in most cases) with rate of ventilation, and a positive and significant relationship with smoking inside buildings (P value < 0.05 in most cases). The bioaccessibility for zinc, copper, lead, cadmium, nickel, and chromium was 69.12, 40.08, 43.33, 79.81, 31.10, and 6.31%, respectively, in indoor dust. Further, risk assessment showed that the risk values of carcinogenicity and non-carcinogenicity resulting from heavy metals inside the studied microenvironments had exceeded the recommended safe limit by EPA. In terms of potential ecological risks, it was found that heavy metals in these microenvironments have exceeded the hazardous ecological levels presented by different indices and can have considerable negative ecological effects. Thus, it is essential that further and better studies and monitoring be performed on these environments, and suitable control recommendations and solutions should be regulated for this public health threat.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Exposição Ambiental/análise , Metais Pesados/análise , Metais Pesados/farmacocinética , Poluição do Ar em Ambientes Fechados/efeitos adversos , Disponibilidade Biológica , Exposição Ambiental/efeitos adversos , Habitação , Humanos , Irã (Geográfico) , Laboratórios , Metais Pesados/toxicidade , Medição de Risco/métodos , Instituições Acadêmicas
4.
Sci Rep ; 9(1): 3110, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816239

RESUMO

Despite increasingly growth in waterpipe smoking in Tehran, so far no study has been conducted on the air quality of the waterpipe and cigarette cafés. Thirty-six cafés were selected and the concentration of three pollutants including formaldehyde, carbon monoxide and nicotine were measured in both indoor and outdoor air of cafés two times (week-day and weekend's session). Air sampling was performed for 180 min for each pollutant. It was observed that the concentration of pollutants inside the cafés was higher during weekend session (with a higher number of "active waterpipe heads") compared with findings during the week-day sessions. Furthermore, the concentration of pollutants in the indoor air of the cafés was significantly higher than that of the outdoors (p < 0.05). According to path analysis, the number of "active waterpipe heads" had the maximum impact on generation of pollutants inside the cafés, followed by the type of tobacco as the second influential factor. The average of lifetime cancer risk (LTCR) resulted by formaldehyde exposure through inhalation in waterpipe (WS), cigarette (CS), waterpipe and cigarette (WCS) and none-smoking (NS) cafés in week-day and weekend sessions were estimated to be 111 × 10-5 and 61.2 × 10-5, 33.7 × 10-5 and 39.4 × 10-5, 271 × 10-5 and 322 × 10-5, and 4.80 × 10-5 and 5.90 × 10-5, respectively, which exceed the limit value by the U.S.EPA and WHO. The concentration of pollutants in the indoor air of smoking cafés in Tehran is significantly high, such that it can pose serious risks for the health of both personnel and customers. Therefore, decision makers are expected to enact applicable and strict policies so as to abate this public health risk.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Ar/análise , Exposição por Inalação/efeitos adversos , Medição de Risco , Poluição por Fumaça de Tabaco/efeitos adversos , Monóxido de Carbono/análise , Monitoramento Ambiental/métodos , Formaldeído/análise , Humanos , Irã (Geográfico) , Nicotina/análise , Fumar Tabaco/efeitos adversos , Fumar Cachimbo de Água/efeitos adversos
5.
Sci Total Environ ; 653: 783-791, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759604

RESUMO

In the present study, a total of 41 sediment samples were collected from the areas with different land uses: industrial (IS), urban (US), agricultural (AGS), and natural field (NS) in the northern coasts along the Persian Gulf from November 2016 to January 2017. Samples were analyzed to determine the concentration of heavy metals (Zn, Cu, Pb, Cd, Cr, and Ni). The mean concentration of Ʃ6 heavy metals in the samples taken from IS, US, AGS, NS were 2300.24, 251.02, 553.21, and 40.93 mg/kg, respectively. The predominant metals were Zn, Cu, and Pb and the mean concentrations of Ʃ3 metals (Zn, Cu, and Pb) in IS, US, AGS, NS areas were 2245.6, 241.44, 529.61, and 36.98 mg/kg, respectively. The results indicated that the mean concentrations of Ʃ6Metals/Ʃ3 metals in the IS and AGS samples were significantly higher than US and NS samples (p < 0.05). Heavy metal levels (mg/kg. dry weight) in all four land uses were as follows: industrial region: Pb (1347.44) > Cu (465.00) > Zn (427.16) > Cr (34.20) > Cd (19.45) > Ni (7.09); urban region: Zn (97.45) > Cu (79.90) > Pb (64.09) > Cr (5.30) > Ni (2.55) > Cd (1.73); agricultural region: Zn (247.88) > Pb (164.89) > Cu (116.84) > Cr (11.09) > Ni (7.45) > Cd (5.06); and natural fields: Zn (27.43) > Cu (6.34) > Pb (3.18) > Cr (1.94) > Ni (1.18) > Cd (0.83). According to geo-accumulation index (I-geo), the IS, US, and AGS were classified into "highly-extremely polluted", "unpolluted-moderately polluted" and "highly polluted", respectively. Similarly, in accordance with the ecological risk index (ERI), the IS and AGS fell into the very high and considerable categories, respectively, while US land uses area was categorized as low risk. Based on the results obtained from the present study, it can be concluded that the sediments of Asalouyeh coasts in the northern part of the Persian Gulf are heavily contaminated with heavy metals, causing serious negative effects on both the human being and environment.

6.
Environ Sci Pollut Res Int ; 26(7): 6450-6459, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623323

RESUMO

Asbestos, as with other pollutants in the air, has adverse effects on the health of human beings and animals. Today, the relationship between presence of asbestos fibers in the air breathed by humans and developing serious diseases such as lung cancer (asbestosis) and mesothelioma has been proven. This study was designed and conducted within the time period of August 2017 and June 2018 to determine the concentration of asbestos fiber in the ambient air of Shahryar City and to evaluate their health effects for the general population of the city. For this purpose, samples were taken from four points, and overall 32 air samples were taken along the year. The samples were then analyzed by the phase contrast microscopy (PCM) method. Also, to investigate the type of asbestos and for more accurate counting of fibers, SEM analysis was utilized. Finally, based on the EPA IRIS method, the health effects resulting from asbestos risks were also evaluated. The results of this study indicated that the mean annual concentration of asbestos fiber in the ambient air of Shahryar City was obtained as 0.0019 f/ml PCM and 0.0072 f/ml SEM. Furthermore, the most polluted point was S1 point (0.0119 -0.0026 f/ml, PCM), while the lowest concentration was related to S4 point (0.001 f/ml PCM-0.0021 f/ml SEM). The mean annual risk resulting from airborne asbestos fiber in the ambient air of Shahryar City for all samples was obtained as 1.72 × 10-6 to 2.2 × 10-4, which was higher than the recommended risk range in some points.


Assuntos
Poluentes Atmosféricos/análise , Amianto/análise , Exposição Ambiental/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Cidades , Monitoramento Ambiental , Humanos , Irã (Geográfico)/epidemiologia , Neoplasias Pulmonares/epidemiologia , Mesotelioma/epidemiologia , Mesotelioma Maligno , Microscopia de Contraste de Fase , Medição de Risco , Estações do Ano
7.
Ecotoxicol Environ Saf ; 169: 496-506, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30472474

RESUMO

Phthalate acid esters (PAEs) are widely used as plasticizers in various plastic products and have aroused considerable concern over their ubiquitous presence and potentially hazardous effects on the environment. This research provides the first data on PAEs distribution in the sediments of northern part of the Persian Gulf. To determine the concentration of 16 PAEs, 26 samples of sediments were collected from industrial stations (IS), urban stations (US), agricultural stations (AGS), and natural field stations (NS) from Asalouyeh Harbor coasts from Nov 2016 to Jan 2017. The mean values of Æ©16PAEs in the samples taken from IS, AGS, US, and NS were 78.08, 11.69, 46.56, and 5.180 µg/g, respectively. The results indicated that the mean concentrations of Æ©16PAEs in the samples taken from IS and AGS areas were significantly higher (p < 0.05) than the ones taken from US and NS areas. The order of PAEs concentrations in sediment samples were as di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and di-n-octyl phthalate (DnOP), respectively. DEHP was detected in all collected samples and the mean ±â€¯SD of its concentration in the IS, US, AGS, and NS regions were as 28.15 ±â€¯4.9, 4.040 ±â€¯0.53, 11.58 ±â€¯1.2, and 1.780 ±â€¯0.78 µg/g, respectively. The major sources of PAEs in the sediments collected from the study region were associated with the industrial and agricultural activities. The findings of this study indicated that the sediments of the Asalouyeh coasts are heavily contaminated with PAEs. They have shown potential ecotoxicological effects on the aquatic organisms and benthic. Therefore, more attention should be paid to prediction of the marine ecosystem in this region by the authorities.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Ácidos Ftálicos/análise , Plastificantes/análise , Poluentes Químicos da Água/análise , Agricultura , Dibutilftalato/análise , Oceano Índico , Indústrias , Irã (Geográfico)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA