Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Neurotrauma ; 40(19-20): 2073-2086, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125452

RESUMO

Hyperventilation (HV) therapy uses vasoconstriction to reduce intracranial pressure (ICP) by reducing cerebral blood volume. However, as HV also lowers cerebral blood flow (CBF), it may provoke misery perfusion (MP), in which the decrease in CBF is coupled with increased oxygen extraction fraction (OEF). MP may rapidly lead to the exhaustion of brain energy metabolites, making the brain vulnerable to ischemia. MP is difficult to detect at the bedside, which is where transcranial hybrid, near-infrared spectroscopies are promising because they non-invasively measure OEF and CBF. We have tested this technology during HV (∼30 min) with bilateral, frontal lobe monitoring to assess MP in 27 sessions in 18 patients with traumatic brain injury. In this study, HV did not lead to MP at a group level (p > 0.05). However, a statistical approach yielded 89 events with a high probability of MP in 19 sessions. We have characterized each statistically significant event in detail and its possible relationship to clinical and radiological status (decompressive craniectomy and presence of a cerebral lesion), without detecting any statistically significant difference (p > 0.05). However, MP detection stresses the need for personalized, real-time assessment in future clinical trials with HV, in order to provide an optimal evaluation of the risk-benefit balance of HV. Our study provides pilot data demonstrating that bedside transcranial hybrid near-infrared spectroscopies could be utilized to assess potential MP.


Assuntos
Lesões Encefálicas Traumáticas , Isquemia Encefálica , Humanos , Hiperventilação/terapia , Hiperventilação/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/complicações , Encéfalo , Isquemia Encefálica/metabolismo , Perfusão/efeitos adversos , Circulação Cerebrovascular , Pressão Intracraniana/fisiologia
3.
Neurophotonics ; 10(1): 015006, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36911206

RESUMO

Significance: The optical measurement of cerebral oxygen metabolism was evaluated. Aim: Compare optically derived cerebral signals to the electroencephalographic bispectral index (BIS) sensors to monitor propofol-induced anesthesia during surgery. Approach: Relative cerebral metabolic rate of oxygen ( rCMRO 2 ) and blood flow (rCBF) were measured by time-resolved and diffuse correlation spectroscopies. Changes were tested against the relative BIS (rBIS) ones. The synchronism in the changes was also assessed by the R-Pearson correlation. Results: In 23 measurements, optically derived signals showed significant changes in agreement with rBIS: during propofol induction, rBIS decreased by 67% [interquartile ranges (IQR) 62% to 71%], rCMRO 2 by 33% (IQR 18% to 46%), and rCBF by 28% (IQR 10% to 37%). During recovery, a significant increase was observed for rBIS (48%, IQR 38% to 55%), rCMRO 2 (29%, IQR 17% to 39%), and rCBF (30%, IQR 10% to 44%). The significance and direction of the changes subject-by-subject were tested: the coupling between the rBIS, rCMRO 2 , and rCBF was witnessed in the majority of the cases (14/18 and 12/18 for rCBF and 19/21 and 13/18 for rCMRO 2 in the initial and final part, respectively). These changes were also correlated in time ( R > 0.69 to R = 1 , p - values < 0.05 ). Conclusions: Optics can reliably monitor rCMRO 2 in such conditions.

4.
Neurophotonics ; 9(4): 045005, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405998

RESUMO

Significance: Benign external hydrocephalus (BEH) is considered a self-limiting pathology with a good prognosis. However, some children present a pathological intracranial pressure (ICP) characterized by quantitative and qualitative alterations (the so-called B-waves) that can lead to neurological sequelae. Aim: Our purpose was to evaluate whether there were cerebral hemodynamic changes associated with ICP B-waves that could be evaluated with noninvasive neuromonitoring. Approach: We recruited eleven patients (median age 16 months, range 7 to 55 months) with BEH and an unfavorable evolution requiring ICP monitoring. Bedside, nocturnal monitoring using near-infrared time-resolved and diffuse correlation spectroscopies synchronized to the clinical monitoring was performed. Results: By focusing on the timing of different ICP patterns that were identified manually by clinicians, we detected significant tissue oxygen saturation ( StO 2 ) changes ( p = 0.002 ) and blood flow index (BFI) variability ( p = 0.005 ) between regular and high-amplitude B-wave patterns. A blinded analysis looking for analogs of ICP patterns in BFI time traces achieved 90% sensitivity in identifying B-waves and 76% specificity in detecting the regular patterns. Conclusions: We revealed the presence of StO 2 and BFI variations-detectable with optical techniques-during ICP B-waves in BEH children. Finally, the feasibility of detecting ICP B-waves in hemodynamic time traces obtained noninvasively was shown.

5.
J Biomed Opt ; 27(7)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35701869

RESUMO

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Assuntos
Laboratórios , Óptica e Fotônica , Imagens de Fantasmas , Reprodutibilidade dos Testes , Análise Espectral
6.
J Neurotrauma ; 37(23): 2569-2579, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460617

RESUMO

Intracranial pressure (ICP) is an important parameter to monitor in several neuropathologies. However, because current clinically accepted methods are invasive, its monitoring is limited to patients in critical conditions. On the other hand, there are other less critical conditions for which ICP monitoring could still be useful; therefore, there is a need to develop non-invasive methods. We propose a new method to estimate ICP based on the analysis of the non-invasive measurement of pulsatile, microvascular cerebral blood flow with diffuse correlation spectroscopy. This is achieved by training a recurrent neural network using only the cerebral blood flow as the input. The method is validated using a 50% split sample method using the data from a proof-of-concept study. The study involved a population of infants (n = 6) with external hydrocephalus (initially diagnosed as benign enlargement of subarachnoid spaces) as well as a population of adults (n = 6) with traumatic brain injury. The algorithm was applied to each cohort individually to obtain a model and an ICP estimate. In both diverse cohorts, the non-invasive estimation of ICP was achieved with an accuracy of <4 mm Hg and a negligible small bias. Further, we have achieved a good correlation (Pearson's correlation coefficient >0.9) and good concordance (Lin's concordance correlation coefficient >0.9) in comparison with standard clinical, invasive ICP monitoring. This preliminary work paves the way for further investigations of this tool for the non-invasive, bedside assessment of ICP.


Assuntos
Pressão Intracraniana , Redes Neurais de Computação , Monitorização Neurofisiológica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Circulação Cerebrovascular , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Hipertensão Intracraniana/diagnóstico , Masculino , Estudo de Prova de Conceito , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA