Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Steroids ; 183: 109021, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35339573

RESUMO

The 11ß hydroxysteroid dehydrogenase type-1 (11ßHSD-1) is a predominant 11ß-reductase regenerating bioactive glucocorticoids (cortisol, corticosterone) from inactive 11-keto forms (cortisone, dehydrocorticosterone), expressed mainly in the brain, liver and adipose tissue. Although the expression levels of 11ß HSD-1 mRNA are known to be influenced by glucocorticoids, its tissue-specific regulation is not completely elucidated. In this study, we examined the effect of persistent glucocorticoid excess on the expression of 11ß HSD-1 mRNA in the hippocampus, liver, and abdominal adipose tissue in vivo using quantitative real-time PCR. We found that, in C57BL/6J mice treated with corticosterone (CORT) pellet for 2 weeks, 11ß HSD-1 mRNA decreased in the hippocampus (HIPP) and liver, whereas it increased in the abdominal fat (FAT), compared with placebo treatment [HIPP: placebo 1.00 ± 0.14, CORT 0.63 ± 0.04; liver: placebo 1.00 ± 0.08, CORT 0.73 ± 0.06; FAT: placebo 1.00 ± 0.16, CORT 2.26 ± 0.39]. Moreover, in CRH transgenic mice, an animal model of Cushing's syndrome with high plasma CORT level, 11ß HSD-1 mRNA was also decreased in the hippocampus and liver, and increased in the abdominal adipose tissue compared to that in wild-type mice. These changes were reversed after adrenalectomy in CRH-Tg mice. Altogether, these results reveal the differential regulation of 11ß HSD-1 mRNA by glucocorticoid among the tissues examined.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Síndrome de Cushing , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Corticosterona/metabolismo , Síndrome de Cushing/genética , Modelos Animais de Doenças , Glucocorticoides/farmacologia , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Intern Med ; 61(2): 133-134, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34334574
9.
PLoS One ; 10(5): e0126229, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25962073

RESUMO

BACKGROUND: Heat shock protein beta-1 (HSPB1, also known as HSP27) is a small heat shock protein involved in many cellular processes and reportedly protects cells against oxidative stress. Autophagy protects cells from many types of stress and is thought to play a key role in preventing stress in acute kidney injury (AKI). However, little is known about the role of HSPB1 in autophagy and apoptosis in the pathogenesis of AKI. METHODS: We used a rat ischemia/reperfusion AKI model and cultured renal tubular cells as an in vitro model. To elucidate the regulation of HSPB1, we evaluated the promoter activity and expression of HSPB1 in normal rat kidney (NRK)-52E cells in the presence of H2O2. To examine the regulation of autophagy by HSPB1, we established NRK-light chain 3 (NRK-LC3) cells that were stably transfected with a fusion protein of green fluorescent protein and LC3. RESULTS: The results of immunohistological examination showed that HSPB1 was expressed in proximal tubule cells after AKI. Real-time quantitative reverse transcription-polymerase chain reaction and western blot analysis showed that HSPB1 messenger RNA and protein expression were upregulated 6-72 h and 12-72 h, respectively, after ischemia/reperfusion injury. HSPB1 promoter activity as well as messenger RNA and protein expression indicated dose-dependent induction by H2O2. HSPB1 overexpression-induced autophagy in NRK-LC3 cells under normoxic conditions was confirmed with confocal microscopy, which revealed the presence of LC3-positive granules. Furthermore, H2O2-induced autophagy was inhibited by the transfection of small interfering RNAs for HSPB1. Overexpression of HSPB1 reduced BAX activation and H2O2-induced apoptosis, as measured by caspase 3 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. CONCLUSIONS: We showed that HSPB1 expression increased during oxidative stress in AKI. Incremental HSPB1 expression increased autophagic flux and inhibited apoptosis in renal tubular cells. These results indicate that HSPB1 upregulation plays a role in the pathophysiology of AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Choque Térmico HSP27/metabolismo , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Injúria Renal Aguda/genética , Animais , Apoptose/genética , Autofagia/genética , Caspase 3/metabolismo , Citocromos c/metabolismo , Proteínas de Choque Térmico HSP27/genética , Imuno-Histoquímica , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley
12.
Ren Fail ; 37(1): 160-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25222109

RESUMO

Recent studies have identified that high glucose-induced renal tubular cell damage. We previously demonstrated that high glucose treatment induced oxidative stress in human renal proximal tubular epithelial cells (RPTECs), and angiotensin II type 1 (AT1) receptor blockers reduce high glucose-induced oxidative stress in RPTEC possibly via blockade of intracellular as well as extracellular AT1 receptor. However, exact roles of tumor necrosis factor (TNF)-α and AT1 receptor on high glucose-induced renal tubular function remain unclear. N-acetyl-beta-glucosaminidase (NAG), concentrations of TNF-α/angiotensin II and p22(phox) protein levels after high glucose treatment with or without AT1 receptor blocker or thalidomide, an inhibitor of TNF-α protein synthesis, were measured in immortalized human renal proximal tubular epithelial cells (HK2 cells). AT1 receptor knockdown was performed with AT1 receptor small interfering RNA (siRNA). High glucose treatment (30 mM) significantly increased NAG release, TNF-α/angiotensin II concentrations in cell media and p22(phox) protein levels compared with those in regular glucose medium (5.6 mM). Candesartan, an AT1R blocker, showed a significant reduction on high glucose-induced NAG release, TNF-α concentrations and p22(phox) protein levels in HK2 cells. In addition, significant decreases of NAG release, TNF-α concentrations and p22(phox) protein levels in HK2 cells were observed in high glucose-treated group with thalidomide. AT1R knockdown with siRNA markedly reversed high glucose, angiotensin II or TNF-α-induced p22(phox) protein levels in HK2 cells. TNF-α may be involved in high glucose-induced renal tubular damage in HK2 cells possibly via AT1 receptor signaling.


Assuntos
Células Epiteliais , Glucose , Túbulos Renais Proximais , Receptor Tipo 1 de Angiotensina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acetilglucosaminidase/metabolismo , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/efeitos adversos , Glucose/metabolismo , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Diabetes ; 61(5): 1062-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22415873

RESUMO

The activity of 6-phosphofructo-1-kinase is strictly controlled by fructose-2,6-bisphosphate, the level of which is regulated by another enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBP2). PFK2/FBP2 is a bifunctional enzyme, having kinase and phosphatase activities, and regulates both glycolysis and gluconeogenesis. Here, we examined the hormonal regulation of the PFK2/FBP2 gene in vitro using the reporter assay, the electromobility shift assay (EMSA), and the chromatin immunoprecipitation (ChIP) assay in HuH7 cells and also using the mouse liver in vivo. We found that the transcriptional activity of the PFK2/FBP2 gene was stimulated by insulin and inhibited by cAMP and glucocorticoid. Liver X receptor (LXR) α showed a potent and specific stimulatory effect on PFK2/FBP2 gene transcription. Deletion and mutagenesis analyses identified the LXR response element (LXRE) in the 5'-promoter region of the PFK2/FBP2 gene. Binding of LXRα was confirmed by the EMSA and ChIP assay. Endogenous PFK2/FBP2 mRNA in the mouse liver was increased in the fasting/refeeding state compared with the fasting state. Altogether, PFK2/FBP2 gene transcription is found to be regulated in a way that is more similar to other glycolytic enzyme genes than to gluconeogenic genes. Furthermore, our data strongly suggest that LXRα is one of the key regulators of PFK2/FBP2 gene transcription.


Assuntos
Receptores Nucleares Órfãos/metabolismo , Fosfofrutoquinase-2/genética , Animais , Ácido Ascórbico , Sequência de Bases , Linhagem Celular , Colecalciferol , Colforsina/administração & dosagem , Colforsina/farmacologia , Desidroepiandrosterona/análogos & derivados , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Privação de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glucose/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidrocarbonetos Fluorados/farmacologia , Insulina/administração & dosagem , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Ácidos Nicotínicos , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Fosfofrutoquinase-2/metabolismo , Extratos Vegetais , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA