Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ther Adv Cardiovasc Dis ; 18: 17539447241253134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819836

RESUMO

Cardiac fibrosis is a pivotal cardiovascular disease (CVD) process and represents a notable health concern worldwide. While the complex mechanisms underlying CVD have been widely investigated, recent research has highlighted microRNA-21's (miR-21) role in cardiac fibrosis pathogenesis. In this narrative review, we explore the molecular interactions, focusing on the role of miR-21 in contributing to cardiac fibrosis. Various signaling pathways, such as the RAAS, TGF-ß, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, besides dysregulation in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs cause cardiac fibrosis. Besides, miR-21 in growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition play crucial roles. miR-21 capacity regulatory function presents promising insights for cardiac fibrosis. Moreover, this review discusses numerous approaches to control miR-21 expression, including antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation, all novel methods of cardiac fibrosis inhibition. In summary, this narrative review aims to assess the molecular mechanisms of cardiac fibrosis and its essential miR-21 function.


Unraveling cardiac fibrosis: insights into microRNA-21's key role and promising approaches for controlCardiac fibrosis poses a significant global health threat and plays a central role in cardiovascular diseases. This examination delves into recent research revealing the participation of microRNA-21 (MiR-21) in the progression of cardiac fibrosis, providing insight into its critical function in this process. The investigation explores diverse molecular interactions, underscoring MiR-21's contribution to the development of cardiac fibrosis. Various signaling pathways, including the Renin-Angiotensin-Aldosterone System, TGF-ß, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, coupled with disturbances in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs), contribute to cardiac fibrosis. MiR-21's influence on growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition further emphasizes its crucial role. What adds promise to MiR-21 is its capacity for regulation, providing potential insights into controlling cardiac fibrosis. The review also investigates various methods to modulate MiR-21 expression, such as antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation ­ innovative approaches showing potential in inhibiting cardiac fibrosis. In summary, this narrative review aims to dissect the complex molecular mechanisms behind cardiac fibrosis, explicitly emphasizing the indispensable role of MiR-21. By comprehending these mechanisms, researchers can lay the groundwork for inventive interventions and therapeutic strategies to hinder cardiac fibrosis, ultimately contributing to advancing cardiovascular health.


Assuntos
Fibrose , MicroRNAs , Transdução de Sinais , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Animais , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia
2.
J Clin Tuberc Other Mycobact Dis ; 34: 100412, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38222862

RESUMO

Diagnosis of Mycobacterium tuberculosis (Mtb) before the progression of pulmonary infection can be very effective in its early treatment. The Mtb grows so slowly that it takes about 6-8 weeks to be diagnosed even using sensitive cell culture methods. The main opponent in tuberculosis (TB) and nontuberculous mycobacterial (NTM) epidemiology, like in all contagious diseases, is to pinpoint the source of infection and reveal its transmission and dispersion ways in the environment. It is crucial to be able to distinguish and monitor specific mycobacterium strains in order to do this. In food analysis, clinical diagnosis, environmental monitoring, and bioprocess, biosensing technologies have been improved to manage and detect Mtb. Biosensors are progressively being considered pioneering tools for point-of-care diagnostics in Mtb discoveries. In this review, we present an epitome of recent developments of biosensing technologies for M. tuberculosis detection, which are categorized on the basis of types of electrochemical, Fluorescent, Photo-thermal, Lateral Flow, Magneto-resistive, Laser, Plasmonic, and Optic biosensors.

3.
J Clin Lab Anal ; 38(3): e25006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268233

RESUMO

BACKGROUND: Procalcitonin (PCT) is a critical biomarker that is released in response to bacterial infections and can be used to differentiate the pathogenesis of the infectious process. OBJECTIVE: In this article, we provide an overview of recent advances in PCT biosensors, highlighting different approaches for biosensor construction, different immobilization methods, advantages and roles of different matrices used, analytical performance, and PCT biosensor construction. Also, we will explain PCT biosensors sensible limits of detection (LOD), linearity, and other analytical characteristics. Future prospects for the development of better PCT biosensor systems are also discussed. METHODS: Traditional methods such as capillary electrophoresis, high-performance liquid chromatography, and mass spectrometry are effective in analyzing PCT in the medical field, but they are complicated, time-consuming sample preparation, and require expensive equipment and skilled personnel. RESULTS: In the past decades, PCT biosensors have emerged as simple, fast, and sensitive tools for PCT analysis in various fields, especially medical fields. CONCLUSION: These biosensors have the potential to accompany or replace traditional analytical methods by simplifying or reducing sample preparation and making field testing easier and faster, while significantly reducing the cost per analysis.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Humanos , Pró-Calcitonina , Infecções Bacterianas/diagnóstico , Técnicas Biossensoriais/métodos , Biomarcadores , Limite de Detecção
4.
Heliyon ; 9(9): e19467, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810167

RESUMO

Hypertension is associated with structural and functional changes in blood vessels with increased arteriosclerosis, vascular inflammation, and endothelial dysfunction. Decreased adherence (compliance) to antihypertensive medications contributes significantly to morbidity and mortality in hypertensive patients. Antihypertensive drugs (AHTDs) and lifestyle changes are the main cornerstones for treating hypertension. Several approaches have been described in the literature for determining AHTDs based on different analytical techniques. Amongst biosensors are one of the most attractive tools due to their inherent advantages. Biosensors are used for the detection of wide range of biomarkers as well as different drugs in past two decades. The main focus of the present study is to review the latest biosensors developed for the detection of AHTDs. Readers of the present study will be able to familiarize themselves with biosensors as advanced and modern diagnostic tools while reviewing the most widely used AHTDs. In the present study, the routine methods are first reviewed and while examining their advantages and disadvantages, biosensors have been introduced as ideal alternative tools.

5.
Pathol Res Pract ; 249: 154757, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598566

RESUMO

Similar to many other diseases, the etiology of Parkinson's disease (PD) is multifactorial and includes both genetic and environmental factors. Exposure to pesticides and the production of reactive oxygen species (ROS) in the body, mainly in electron transporter complexes 1 and 2 in the inner mitochondrial membrane, are two primary environmental risk factors for this disease. Increased accumulation of ROS and oxidative stress (OS) trigger a series of reactions that can lead to the aggregation of misfolded proteins, DNA damage, autophagy, and apoptosis, which may adversely affect cell function. These processes cause diseases such as coronary artery disease (CAD), Alzheimer's disease (AD), and PD. As indicated in previous studies, ROS is considered a critical regulator in the progression of PD. The human body contains several antioxidant molecules, such as vitamin A, vitamin C, bilirubin, and uric acid, as well as antioxidant enzymes including paraoxonase (PON), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Therefore, based on the canonical function of the antioxidant enzymes in PD, In the present review, we attempted to examine the function of antioxidant enzymes in PD.


Assuntos
Antioxidantes , Doença de Parkinson , Humanos , Espécies Reativas de Oxigênio , Ácido Ascórbico , Glutationa Peroxidase
6.
Inflammopharmacology ; 31(5): 2337-2348, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550520

RESUMO

INTRODUCTION: The principal etiology of mortality in COVID-19 patients is the systemic pro-inflammatory processes which may lead to acute respiratory distress syndrome. Hematologic indices are reachable representatives of inflammation in patients with COVID-19 infection. The purpose of the current study was to evaluate the potential predictive value of these inflammatory indices in the in-hospital mortality of ICU-admitted COVID-19 patients. The studied indexes included AISI, dNLR, NLPR, NLR, SII, and SIRI. METHOD: 315 COVID-19 patients admitted to ICU managed in Imam Khomeini Hospital of Urmia, Iran, during the last 6 months of 2020 were retrospectively enrolled in the study and divided into two subgroups based on their final outcome, discharge or death. RESULTS: Total leucocyte count (TLC), absolute neutrophil count (NLC), urea, Cr, RDW, AISI, dNLR, NLPR, NLR, SII, and SIRI were drastically elevated in the dead patients (P < 0.05). The optimal cut-off points for AISI (378.81), dNLR (5.66), NLPR (0.03), NLR (5.97), SII (1589.25), and SIRI (2.31) were obtained using ROC curves. NLR and SII had the highest sensitivity (71.4%) and specificity (73.6%), respectively. Patients with above-cut-off levels of ISI, dNLR, NLPR, NLR, and SII had lower average survival time. Age (OR = 1.057, CI95%: 1.030-1.085, p < 0.001) and dNLR (OR = 1.131, CI95%: 1.061-1.206, p < 0.001) were the independent predictors for mortality in the studied COVID-19 patients based on multivariate logistic regression. CONCLUSION: Age and dNLR are valuable predictive factors for in-hospital death of ICU-admitted COVID-19 patients. Besides, other indices, AISI, NLPR, NLR, SII, and SIRI, may have an additional role that requires further investigation.


Assuntos
COVID-19 , Humanos , Mortalidade Hospitalar , Estudos Retrospectivos , Inflamação , Unidades de Terapia Intensiva
7.
Mol Biol Rep ; 50(6): 5407-5414, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081307

RESUMO

Breast cancer is one of the most serious malignancies among women, accounting for about 12% of all cancers. The inherent complexity and heterogeneity of breast cancer results in failure to respond to treatment in the advanced stages of the disease. Breast cancer is caused by several genetic and environmental factors. One of the significant factors involved in the development of breast cancer is oxidative stress, which is generally regulated by nuclear factor erythroid 2-related factor 2 (NRF2). The level of NRF2 expression is low in healthy cells, which maintains the balance of the antioxidant system; however, its expression is higher in cancer cells, which have correlation characteristics such as angiogenesis, stem cell formation, drug resistance, and metastasis. Drug resistance increases with the upregulation of NRF2 expression, which contributes to cell protection. NRF2 controls this mechanism by increasing the expression of ATP-binding cassettes (ABCs). Considering the growing number of studies in this field, we aimed to investigate the relationship between NRF2 and ABCs, as well as their role in the development of drug resistance in breast cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima , Resistência a Medicamentos
8.
Microb Pathog ; 176: 105995, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681203

RESUMO

Despite the availability of an effective hepatitis B virus (HBV) vaccine and universal immunization schedules, HBV has remained a health problem in various stages such as occult hepatitis B infection (OBI), chronic hepatitis B (CHB), and hepatocellular carcinoma (HCC), which is considered one of the possible phases during chronic HBV infection. OBI is defined as the persistence of HBV genomes in hepatocytes of patients with a negative HBV surface antigen (HBsAg) test and detectable or undetectable HBV DNA in the blood. OBI is occasionally associated with infection caused by mutant viruses that produce a modified HBsAg that is undetected by diagnostic procedures or with replication-defective variations. Many aspects of HBV (OBI more than any other stage) including prevalence, pathobiology, and clinical implications has remained controversial. According to a growing body of research, non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been linked to the development and progression of a number of illnesses, including viral infectious disorders. Despite a shortage of knowledge regarding the expression and biological activities of lncRNAs and miRNAs in HBV infection, Hepatitis B remains a major global public health concern. This review summarizes the role of lncRNAs in the diagnosis and treatment of different stages of hepatitis B infection.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Antígenos de Superfície da Hepatite B , Neoplasias Hepáticas/patologia , DNA Viral , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA