Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Circ Genom Precis Med ; 16(3): 224-231, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165897

RESUMO

BACKGROUND: Known genetic causes of congenital heart disease (CHD) explain <40% of CHD cases, and interpreting the clinical significance of variants with uncertain functional impact remains challenging. We aim to improve diagnostic classification of variants in patients with CHD by assessing the impact of noncanonical splice region variants on RNA splicing. METHODS: We tested de novo variants from trio studies of 2649 CHD probands and their parents, as well as rare (allele frequency, <2×10-6) variants from 4472 CHD probands in the Pediatric Cardiac Genetics Consortium through a combined computational and in vitro approach. RESULTS: We identified 53 de novo and 74 rare variants in CHD cases that alter splicing and thus are loss of function. Of these, 77 variants are in known dominant, recessive, and candidate CHD genes, including KMT2D and RBFOX2. In 1 case, we confirmed the variant's predicted impact on RNA splicing in RNA transcripts from the proband's cardiac tissue. Two probands were found to have 2 loss-of-function variants for recessive CHD genes HECTD1 and DYNC2H1. In addition, SpliceAI-a predictive algorithm for altered RNA splicing-has a positive predictive value of ≈93% in our cohort. CONCLUSIONS: Through assessment of RNA splicing, we identified a new loss-of-function variant within a CHD gene in 78 probands, of whom 69 (1.5%; n=4472) did not have a previously established genetic explanation for CHD. Identification of splice-altering variants improves diagnostic classification and genetic diagnoses for CHD. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT01196182.


Assuntos
Cardiopatias Congênitas , RNA , Criança , Humanos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Mutação , Splicing de RNA , Frequência do Gene , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
2.
Diseases ; 11(2)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092441

RESUMO

BACKGROUND AND AIMS: Multiple myeloma (MM) is a plasma cell dyscrasia that is common among patients with autoimmune diseases. However, the association between ulcerative colitis (UC) and multiple myeloma (MM) is yet to be established. We aimed to evaluate the prevalence of MM among patients with UC in the United States. METHODS: This cross-sectional cohort analysis used the National Inpatient Sample from 2015-2018 to assess the overall MM prevalence among patients with and without UC, and within specific demographic subgroups. Prevalences were compared using a logistic regression model controlling for sex and age. RESULTS: The crude prevalence of MM among patients with UC (n = 1750) compared with patients without UC (n = 366,265) was 0.44% vs. 0.37%, respectively. Patients with UC had increased overall odds of having MM (odds ratio (OR), 1.26). Males with UC had higher prevalence of MM (53.7% vs. 46.3%, respectively) than females. Patients with UC and MM were more likely to be African American than White (15.6% vs. 9.2%, respectively). Patients with UC age >64 had a higher prevalence of MM than those aged below 65 (70.9% vs. 29.1%, respectively). Patients with UC who were obese (BMI > 30) had a higher prevalence of MM than those who were non-obese (12.6% vs. 8.3%). CONCLUSIONS: Overall, UC appears to be associated with MM. This association can be particularly observed in specific demographic groups, such as obese, African American males, or patients >64 years of age. Thus, a high degree of clinical suspicion for MM is warranted, even with minimal symptomatology, in patients with UC, in particular among elder, obese, and African American males.

3.
Circulation ; 146(22): 1674-1693, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36321451

RESUMO

BACKGROUND: ALPK3 encodes α-kinase 3, a muscle-specific protein of unknown function. ALPK3 loss-of-function variants cause cardiomyopathy with distinctive clinical manifestations in both children and adults, but the molecular functions of ALPK3 remain poorly understood. METHODS: We explored the putative kinase activity of ALPK3 and the consequences of damaging variants using isogenic human induced pluripotent stem cell-derived cardiomyocytes, mice, and human patient tissues. RESULTS: Multiple sequence alignment of all human α-kinase domains and their orthologs revealed 4 conserved residues that were variant only in ALPK3, demonstrating evolutionary divergence of the ALPK3 α-kinase domain sequence. Phosphoproteomic evaluation of both ALPK3 kinase domain inhibition and overexpression failed to detect significant changes in catalytic activity, establishing ALPK3 as a pseudokinase. Investigations into alternative functions revealed that ALPK3 colocalized with myomesin proteins (MYOM1, MYOM2) at both the nuclear envelope and the sarcomere M-band. ALPK3 loss-of-function variants caused myomesin proteins to mislocalize and also dysregulated several additional M-band proteins involved in sarcomere protein turnover, which ultimately impaired cardiomyocyte structure and function. CONCLUSIONS: ALPK3 is an essential cardiac pseudokinase that inserts in the nuclear envelope and the sarcomere M-band. Loss of ALPK3 causes mislocalization of myomesins, critical force-buffering proteins in cardiomyocytes, and also dysregulates M-band proteins necessary for sarcomere protein turnover. We conclude that ALPK3 cardiomyopathy induces ventricular dilatation caused by insufficient myomesin-mediated force buffering and hypertrophy by impairment of sarcomere proteostasis.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Proteínas Musculares , Proteínas Quinases , Adulto , Animais , Criança , Humanos , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Conectina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Proteínas Quinases/genética
4.
Am J Hum Genet ; 109(5): 961-966, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397206

RESUMO

The well-established manifestation of mitochondrial mutations in functional cardiac disease (e.g., mitochondrial cardiomyopathy) prompted the hypothesis that mitochondrial DNA (mtDNA) sequence and/or copy number (mtDNAcn) variation contribute to cardiac defects in congenital heart disease (CHD). MtDNAcns were calculated and rare, non-synonymous mtDNA mutations were identified in 1,837 CHD-affected proband-parent trios, 116 CHD-affected singletons, and 114 paired cardiovascular tissue/blood samples. The variant allele fraction (VAF) of heteroplasmic variants in mitochondrial RNA from 257 CHD cardiovascular tissue samples was also calculated. On average, mtDNA from blood had 0.14 rare variants and 52.9 mtDNA copies per nuclear genome per proband. No variation with parental age at proband birth or CHD-affected proband age was seen. mtDNAcns in valve/vessel tissue (320 ± 70) were lower than in atrial tissue (1,080 ± 320, p = 6.8E-21), which were lower than in ventricle tissue (1,340 ± 280, p = 1.4E-4). The frequency of rare variants in CHD-affected individual DNA was indistinguishable from the frequency in an unaffected cohort, and proband mtDNAcns did not vary from those of CHD cohort parents. In both the CHD and the comparison cohorts, mtDNAcns were significantly correlated between mother-child, father-child, and mother-father. mtDNAcns among people with European (mean = 52.0), African (53.0), and Asian haplogroups (53.5) were calculated and were significantly different for European and Asian haplogroups (p = 2.6E-3). Variant heteroplasmic fraction (HF) in blood correlated well with paired cardiovascular tissue HF (r = 0.975) and RNA VAF (r = 0.953), which suggests blood HF is a reasonable proxy for HF in heart tissue. We conclude that mtDNA mutations and mtDNAcns are unlikely to contribute significantly to CHD risk.


Assuntos
DNA Mitocondrial , Cardiopatias Congênitas , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Cardiopatias Congênitas/genética , Humanos , Mitocôndrias/genética , Mutação/genética
5.
Genome Med ; 12(1): 42, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349777

RESUMO

BACKGROUND: The contribution of somatic mosaicism, or genetic mutations arising after oocyte fertilization, to congenital heart disease (CHD) is not well understood. Further, the relationship between mosaicism in blood and cardiovascular tissue has not been determined. METHODS: We developed a new computational method, EM-mosaic (Expectation-Maximization-based detection of mosaicism), to analyze mosaicism in exome sequences derived primarily from blood DNA of 2530 CHD proband-parent trios. To optimize this method, we measured mosaic detection power as a function of sequencing depth. In parallel, we analyzed our cohort using MosaicHunter, a Bayesian genotyping algorithm-based mosaic detection tool, and compared the two methods. The accuracy of these mosaic variant detection algorithms was assessed using an independent resequencing method. We then applied both methods to detect mosaicism in cardiac tissue-derived exome sequences of 66 participants for which matched blood and heart tissue was available. RESULTS: EM-mosaic detected 326 mosaic mutations in blood and/or cardiac tissue DNA. Of the 309 detected in blood DNA, 85/97 (88%) tested were independently confirmed, while 7/17 (41%) candidates of 17 detected in cardiac tissue were confirmed. MosaicHunter detected an additional 64 mosaics, of which 23/46 (50%) among 58 candidates from blood and 4/6 (67%) of 6 candidates from cardiac tissue confirmed. Twenty-five mosaic variants altered CHD-risk genes, affecting 1% of our cohort. Of these 25, 22/22 candidates tested were confirmed. Variants predicted as damaging had higher variant allele fraction than benign variants, suggesting a role in CHD. The estimated true frequency of mosaic variants above 10% mosaicism was 0.14/person in blood and 0.21/person in cardiac tissue. Analysis of 66 individuals with matched cardiac tissue available revealed both tissue-specific and shared mosaicism, with shared mosaics generally having higher allele fraction. CONCLUSIONS: We estimate that ~ 1% of CHD probands have a mosaic variant detectable in blood that could contribute to cardiac malformations, particularly those damaging variants with relatively higher allele fraction. Although blood is a readily available DNA source, cardiac tissues analyzed contributed ~ 5% of somatic mosaic variants identified, indicating the value of tissue mosaicism analyses.


Assuntos
Cardiopatias Congênitas/genética , Software , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Mosaicismo , Mutação Puntual , Adulto Jovem
6.
Sci Transl Med ; 11(476)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674652

RESUMO

The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação/genética , Miosinas/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Fenótipo , ortoaminobenzoatos/metabolismo
7.
Curr Protoc Hum Genet ; 97(1): e58, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-30040209

RESUMO

DNA structural variants can be analyzed by droplet digital PCR (ddPCR), a water-oil microfluidics and fluorescence technology to quantify target nucleic acids with extreme precision and sensitivity. Traditional ddPCR uses expensive fluorescent oligonucleotide probes that require extensive optimization. Here we describe a variation of ddPCR using a DNA-binding dye (EvaGreen), whose properties allow target products to be effectively quantified at a significantly lower cost. © 2018 by John Wiley & Sons, Inc.


Assuntos
DNA/análise , Sondas Moleculares/química , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Bioensaio , Humanos
8.
Hum Mutat ; 39(6): 870-881, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29527824

RESUMO

Multiple tools have been developed to identify copy number variants (CNVs) from whole exome (WES) and whole genome sequencing (WGS) data. Current tools such as XHMM for WES and CNVnator for WGS identify CNVs based on changes in read depth. For WGS, other methods to identify CNVs include utilizing discordant read pairs and split reads and genome-wide local assembly with tools such as Lumpy and SvABA, respectively. Here, we introduce a new method to identify deletion CNVs from WES and WGS trio data based on the clustering of Mendelian errors (MEs). Using our Mendelian Error Method (MEM), we identified 127 deletions (inherited and de novo) in 2,601 WES trios from the Pediatric Cardiac Genomics Consortium, with a validation rate of 88% by digital droplet PCR. MEM identified additional de novo deletions compared with XHMM, and a significant enrichment of 15q11.2 deletions compared with controls. In addition, MEM identified eight cases of uniparental disomy, sample switches, and DNA contamination. We applied MEM to WGS data from the Genome In A Bottle Ashkenazi trio and identified deletions with 97% specificity. MEM provides a robust, computationally inexpensive method for identifying deletions, and an orthogonal approach for verifying deletions called by other tools.


Assuntos
Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA/métodos , Genoma Humano/genética , Deleção de Sequência/genética , Mapeamento Cromossômico , Exoma/genética , Feminino , Cardiopatias Congênitas/genética , Humanos , Masculino , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
9.
Hum Genet ; 137(2): 183-193, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29417219

RESUMO

Mosaicism due to somatic mutations can cause multiple diseases including cancer, developmental and overgrowth syndromes, neurodevelopmental disorders, autoinflammatory diseases, and atrial fibrillation. With the increased use of next generation sequencing technology, multiple tools have been developed to identify low-frequency variants, specifically from matched tumor-normal tissues in cancer studies. To investigate whether mosaic variants are implicated in congenital heart disease (CHD), we developed a pipeline using the cancer somatic variant caller MuTect to identify mosaic variants in whole-exome sequencing (WES) data from a cohort of parent/affected child trios (n = 715) and a cohort of healthy individuals (n = 416). This is a novel application of the somatic variant caller designed for cancer to WES trio data. We identified two cases with mosaic KMT2D mutations that are likely pathogenic for CHD, but conclude that, overall, mosaicism detectable in peripheral blood or saliva does not account for a significant portion of CHD etiology.


Assuntos
Sequenciamento do Exoma , Variação Genética , Cardiopatias Congênitas/genética , Mosaicismo , Criança , Exoma/genética , Cardiopatias Congênitas/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Software
10.
J Pharmacol Exp Ther ; 357(3): 570-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27029583

RESUMO

GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1ß3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 µM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 µM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the ß3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices.


Assuntos
Anestésicos Gerais/química , Anestésicos Gerais/farmacologia , Cicloexanóis/química , Cicloexanóis/farmacologia , Receptores de GABA-A/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Receptores de GABA-A/química , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA