Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 2(3): 268-289, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39196021

RESUMO

Dysregulation of estrogen receptor alpha (ERα) has been linked with increased metabolic and cardiovascular disease risk. Here, we generate and characterize cardiomyocyte-specific ERα knockout (ERαHKO) mice to assess the role of ERα in the heart. The most striking phenotype was obesity in female ERαHKO but not male ERαHKO mice. Female ERαHKO mice showed cardiac dysfunction, mild glucose and insulin intolerance and reduced ERα gene expression in skeletal muscle and white adipose tissue. Transcriptomic, proteomic, lipidomic and metabolomic analyses revealed evidence of contractile and/or metabolic dysregulation in heart, skeletal muscle and white adipose tissue. We show that heart-derived extracellular vesicles from female ERαHKO mice contain a distinct proteome associated with lipid and metabolic regulation, and have the capacity to metabolically reprogram the target skeletal myocyte proteome with functional impacts on glycolytic capacity and reserve. This multi-omics study uncovers a cardiac-initiated and sex-specific cardiometabolic phenotype regulated by ERα and provides insights into extracellular vesicle-mediated interorgan communication.


Assuntos
Receptor alfa de Estrogênio , Vesículas Extracelulares , Camundongos Knockout , Miócitos Cardíacos , Obesidade , Proteoma , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/deficiência , Miócitos Cardíacos/metabolismo , Feminino , Obesidade/metabolismo , Obesidade/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteoma/metabolismo , Masculino , Proteômica , Fatores Sexuais , Camundongos , Modelos Animais de Doenças , Fenótipo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético
2.
Cells ; 11(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36231079

RESUMO

MicroRNA 34a (miR-34a) is elevated in the heart in a setting of cardiac stress or pathology, and we previously reported that inhibition of miR-34a in vivo provided protection in a setting of pressure overload-induced pathological cardiac hypertrophy and dilated cardiomyopathy. Prior work had also shown that circulating or cardiac miR-34a was elevated in a setting of diabetes. However, the therapeutic potential of inhibiting miR-34a in vivo in the diabetic heart had not been assessed. In the current study, type 1 diabetes was induced in adult male mice with 5 daily injections of streptozotocin (STZ). At 8 weeks post-STZ, when mice had established type 1 diabetes and diastolic dysfunction, mice were administered locked nucleic acid (LNA)-antimiR-34a or saline-control with an eight-week follow-up. Cardiac function, cardiac morphology, cardiac fibrosis, capillary density and gene expression were assessed. Diabetic mice presented with high blood glucose, elevated liver and kidney weights, diastolic dysfunction, mild cardiac enlargement, cardiac fibrosis and reduced myocardial capillary density. miR-34a was elevated in the heart of diabetic mice in comparison to non-diabetic mice. Inhibition of miR-34a had no significant effect on diastolic function or atrial enlargement, but had a mild effect on preventing an elevation in cardiac enlargement, fibrosis and ventricular gene expression of B-type natriuretic peptide (BNP) and the anti-angiogenic miRNA (miR-92a). A miR-34a target, vinculin, was inversely correlated with miR-34a expression, but other miR-34a targets were unchanged. In summary, inhibition of miR-34a provided limited protection in a mouse model with established type 1 diabetes-induced cardiomyopathy and failed to improve diastolic function. Given diabetes represents a systemic disorder with numerous miRNAs dysregulated in the diabetic heart, as well as other organs, strategies targeting multiple miRNAs and/or earlier intervention is likely to be required.


Assuntos
Cardiomiopatia Dilatada , Diabetes Mellitus Tipo 1 , MicroRNAs , Animais , Glicemia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/metabolismo , Peptídeo Natriurético Encefálico , Estreptozocina , Vinculina
3.
J Sport Health Sci ; 10(6): 637-647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33246162

RESUMO

Heart failure represents the end point of a variety of cardiovascular diseases. It is a growing health burden and a leading cause of death worldwide. To date, limited treatment options exist for the treatment of heart failure, but exercise has been well-established as one of the few safe and effective interventions, leading to improved outcomes in patients. However, a lack of patient adherence remains a significant barrier in the implementation of exercise-based therapy for the treatment of heart failure. The insulin-like growth factor 1 (IGF1)-phosphoinositide 3-kinase (PI3K) pathway has been recognized as perhaps the most critical pathway for mediating exercised-induced heart growth and protection. Here, we discuss how modulating activity of the IGF1-PI3K pathway may be a valuable approach for the development of therapies that mimic the protective effects of exercise on the heart. We outline some of the promising approaches being investigated that utilize PI3K-based therapy for the treatment of heart failure. We discuss the implications for cardiac pathology and cardiotoxicity that arise in a setting of reduced PI3K activity. Finally, we discuss the use of animal models of cardiac health and disease, and genetic mice with increased or decreased cardiac PI3K activity for the discovery of novel drug targets and biomarkers of cardiovascular disease.


Assuntos
Insuficiência Cardíaca , Fosfatidilinositol 3-Quinases , Animais , Biomarcadores , Cardiomegalia , Cardiotoxicidade , Insuficiência Cardíaca/terapia , Humanos , Fator de Crescimento Insulin-Like I , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
4.
PLoS Pathog ; 16(6): e1008592, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555740

RESUMO

The neuraminidase (NA) inhibitor (NAI) oseltamivir (OST) is the most widely used influenza antiviral drug. Several NA amino acid substitutions are reported to reduce viral susceptibility to OST in in vitro assays. However, whether there is a correlation between the level of reduction in susceptibility in vitro and the efficacy of OST against these viruses in vivo is not well understood. In this study, a ferret model was utilised to evaluate OST efficacy against circulating influenza A and B viruses with a range of in vitro generated 50% inhibitory concentrations (IC50) values for OST. OST efficacy against an A(H1N1)pdm09 and an A(H1N1)pdm09 virus with the H275Y substitution in neuraminidase was also tested in the macaque model. The results from this study showed that OST had a significant impact on virological parameters compared to placebo treatment of ferrets infected with wild-type influenza A viruses with normal IC50 values (~1 nM). However, this efficacy was lower against wild-type influenza B and other viruses with higher IC50 values. Differing pathogenicity of the viruses made evaluation of clinical parameters difficult, although some effect of OST in reducing clinical signs was observed with influenza A(H1N1) and A(H1N1)pdm09 (H275Y) viruses. Viral titres in macaques were too low to draw conclusive results. Analysis of the ferret data revealed a correlation between IC50 and OST efficacy in reducing viral shedding but highlighted that the current WHO guidelines/criteria for defining normal, reduced or highly reduced inhibition in influenza B viruses based on in vitro data are not well aligned with the low in vivo OST efficacy observed for both wild-type influenza B viruses and those with reduced OST susceptibility.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Infecções por Orthomyxoviridae , Oseltamivir , Animais , Feminino , Masculino , Substituição de Aminoácidos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Furões , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza B/genética , Vírus da Influenza B/metabolismo , Macaca fascicularis , Macrolídeos , Mutação de Sentido Incorreto , Neuraminidase/genética , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Oseltamivir/farmacologia
5.
PLoS One ; 15(5): e0233794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470013

RESUMO

The domestic ferret (Mustela putorius furo) provides a critical animal model to study human respiratory diseases. However immunological insights are restricted due to a lack of ferret-specific reagents and limited genetic information about ferret B and T cell receptors. Here, variable, diversity and joining genes within the ferret kappa, lambda and heavy chain immunoglobulin loci were annotated using available genomic information. A multiplex PCR approach was derived that facilitated the recovery of paired heavy and light chain immunoglobulin sequences from single sorted ferret B cells, allowing validation of predicted germline gene sequences and the identification of putative novel germlines. Eukaryotic expression vectors were developed that enabled the generation of recombinant ferret monoclonal antibodies. This work advances the ferret as an informative immunological model for viral diseases by allowing the in-depth interrogation of antibody-based immunity.


Assuntos
Linfócitos B/imunologia , Modelos Animais de Doenças , Furões , Cadeias Leves de Imunoglobulina/genética , Receptores de Antígenos de Linfócitos B/genética , Animais , Anticorpos Monoclonais/biossíntese , Linfócitos B/citologia , Sequência de Bases , Furões/genética , Furões/imunologia , Genoma , Proteínas Recombinantes de Fusão/biossíntese
6.
Antiviral Res ; 176: 104751, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32088248

RESUMO

Combination therapy is an alternative approach to reduce viral shedding and improve clinical outcomes following influenza virus infections. In this study we used oseltamivir (OST), a neuraminidase inhibitor and nitazoxanide (NTZ), a host directed drug, and found in vitro that the combination of these two antivirals have a synergistic relationship. Using the ferret model of (A/Perth/265/2009, (H1N1)pdm09), virus infections, we found that the combination of NTZ and OST was more effective than either NTZ or OST independently in preventing infection and reducing duration of viral shedding. However, these benefits were only seen if treatment was administered prophylactically, as opposed to therapeutically. We also found that if prophylactically treated ferrets that had detectable virus in the upper respiratory tract, no virus was detected in the lower respiratory tract. This benefit was not observed with NTZ or OST alone. The combination of NTZ and OST enhances the antiviral effect of OST, which is the standard of care in most settings.


Assuntos
Antivirais/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Oseltamivir/administração & dosagem , Tiazóis/administração & dosagem , Administração Oral , Animais , Quimioprevenção , Cães , Combinação de Medicamentos , Farmacorresistência Viral , Feminino , Furões/virologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Pulmão/virologia , Células Madin Darby de Rim Canino , Masculino , Nitrocompostos , Eliminação de Partículas Virais/efeitos dos fármacos
7.
Metabolomics ; 15(3): 33, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830484

RESUMO

INTRODUCTION: Influenza is a highly contagious respiratory disease that causes high global morbidity and mortality each year. The dynamics of an influenza infection on the host metabolism, and how metabolism is altered in response to neuraminidase inhibitor drug therapy, is still in its infancy but of great importance. OBJECTIVES: We aim to investigate the suitability of ferret nasal wash samples for metabolomics-based analysis and characterization of influenza infections and oseltamivir treatment. METHODS: Virological and metabolic analyses were performed on nasal wash samples collected from ferrets treated with oseltamivir or a placebo. Untargeted metabolomics was performed using a gas chromatography coupled with mass spectrometery (GC-MS) based protocol that comprised a retention time (RT) locked method and the use of a commercial metabolomics library. RESULTS: Ferret activity was reduced at 2-3 days post infection, which coincided with the highest influenza viral titre. The metabolomics data indicated a shift in metabolism during various stages of infection. The neuraminidase inhibitor oseltamivir created considerable downregulation of energy center metabolites (glucose, sucrose, glycine and glutamine), which generated high levels of branched amino acids. This further increased branched amino acid degradation and deregulation via glycerate-type intermediates and biosynthesis of fatty acids in oseltamivir-treated animals where abrogated weight loss was observed. CONCLUSION: Metabolomics was used to profile influenza infection and antiviral drug treatment in ferrets. This has the potential to provide indicators for the early diagnosis of influenza infection and assess the effectiveness of drug therapies.


Assuntos
Furões/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções Respiratórias/metabolismo , Animais , Antivirais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Metabolômica , Oseltamivir/farmacologia , Sistema Respiratório
8.
Expert Opin Drug Discov ; 13(12): 1131-1139, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362841

RESUMO

INTRODUCTION: Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons. Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics. Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.


Assuntos
Antivirais/administração & dosagem , Modelos Animais de Doenças , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/farmacologia , Cricetinae , Suscetibilidade a Doenças , Furões , Cobaias , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/transmissão , Influenza Humana/virologia , Mesocricetus , Camundongos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Primatas , Sigmodontinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA