Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Autophagy ; 20(3): 489-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37722816

RESUMO

Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific fgf21- and/or atg5-deficient mice at 24 months (aged) or under high-fat diet (obese) conditions. PTEC-specific FGF21 deficiency in young mice increased autophagic flux due to increased demand of autophagy, whereas fgf21-deficient aged or obese mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and aged or obese PTEC-specific fgf21- and atg5-double deficient mice deteriorated renal histology compared with atg5-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.


Assuntos
Autofagia , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Idoso , Autofagia/fisiologia , Rim/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Obesidade/metabolismo , Envelhecimento , Progressão da Doença
2.
Biochem Biophys Rep ; 34: 101452, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36909453

RESUMO

d-Amino acids, rare enantiomers of amino acids, have been identified as biomarkers and therapeutic options for COVID-19. Methods for monitoring recovery are necessary for managing COVID-19. On the other hand, the presence of SARS-CoV2 virus in the blood is associated with worse outcomes. We investigated the potential of d-amino acids for assessing recovery from severe COVID-19. In patients with severe COVID-19 requiring artificial ventilation, the blood levels of d-amino acids, including d-alanine, d-proline, d-serine, and d-asparagine, which were lower than the normal range before treatment, quickly and transiently increased and surpassed the upper limit of the normal range. This increase preceded the recovery of respiratory function, as indicated by ventilation weaning. The increase in blood d-amino acid levels was associated with the disappearance of the virus in the blood, but not with inflammatory manifestations or blood cytokine levels. d-Amino acids are sensitive biomarkers that reflect the recovery of the clinical course and blood viral load. Dynamic changes in blood d-amino acid levels are key indicators of clinical course.

3.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36649084

RESUMO

Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in obesity-related kidney disease, in both humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here, we found that palmitic acid strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 pathway in a Rag GTPase-dependent manner, though these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell-specific (PTEC-specific) Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which helped reduce MLB accumulation in PTECs. Furthermore, HFD-fed, PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia/reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of patients with chronic kidney disease. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.


Assuntos
Dieta Hiperlipídica , Exocitose , Lipídeos , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Exocitose/genética , Rim/metabolismo , Rim/patologia , Lipídeos/toxicidade , Lisossomos/metabolismo , Obesidade/metabolismo , Insuficiência Renal Crônica/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166584, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280155

RESUMO

Since the outbreak of coronavirus disease 2019 (COVID-19), biomarkers for evaluating severity, as well as supportive care to improve clinical course, remain insufficient. We explored the potential of d-amino acids, rare enantiomers of amino acids, as biomarkers for assessing disease severity and as protective nutrients against severe viral infections. In mice infected with influenza A virus (IAV) and in patients with severe COVID-19 requiring artificial ventilation or extracorporeal membrane oxygenation, blood levels of d-amino acids, including d-alanine, were reduced significantly compared with those of uninfected mice or healthy controls. In mice models of IAV infection or COVID-19, supplementation with d-alanine alleviated severity of clinical course, and mice with sustained blood levels of d-alanine showed favorable prognoses. In severe viral infections, blood levels of d-amino acids, including d-alanine, decrease, and supplementation with d-alanine improves prognosis. d-Alanine has great potentials as a biomarker and a therapeutic option for severe viral infections.


Assuntos
Tratamento Farmacológico da COVID-19 , Doenças Transmissíveis , Influenza Humana , Camundongos , Animais , Humanos , Influenza Humana/tratamento farmacológico , Alanina/uso terapêutico , SARS-CoV-2 , Biomarcadores
5.
Clin Exp Nephrol ; 27(3): 279-287, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36344716

RESUMO

BACKGROUND: A certain number of patients with coronavirus disease 2019 (COVID-19), particularly those who test positive for SARS-CoV-2 in the serum, are hospitalized. Further, some even die. We examined the effect of blood adsorption therapy using columns that can eliminate SARS-CoV-2 on the improvement of the prognosis of severe COVID-19 patients. METHODS: This study enrolled seven patients receiving mechanical ventilation. The patients received viral adsorption therapy using SARS-catch column for 3 days. The SARS-catch column was developed by immobilizing a specific peptide, designed based on the sequence of human angiotensin-converting enzyme 2 (hACE2), to an endotoxin adsorption column (PMX). In total, eight types of SARS-CoV-2-catch (SCC) candidate peptides were developed. Then, a clinical study on the effects of blood adsorption therapy using the SARS-catch column in patients with severe COVID-19 was performed, and the data in the present study were compared with historical data of severe COVID-19 patients. RESULTS: Among all SCC candidate peptides, SCC-4N had the best adsorption activity against SARS-CoV-2. The SARS-catch column using SCC-4N removed 65% more SARS-CoV-2 than PMX. Compared with historical data, the weaning time from mechanical ventilation was faster in the present study. In addition, the rate of negative blood viral load in the present study was higher than that in the historical data. CONCLUSION: The timely treatment with virus adsorption therapy may eliminate serum SARS-CoV-2 and improve the prognosis of patients with severe COVID-19. However, large-scale studies must be performed in the future to further assess the finding of this study (jRCTs052200134).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peptídeos
7.
Cell Rep ; 38(9): 110444, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235784

RESUMO

Accumulation of senescent cells affects organismal aging and the prevalence of age-associated disease. Emerging evidence suggests that activation of autophagy protects against age-associated diseases and promotes longevity, but the roles and regulatory mechanisms of autophagy in cellular senescence are not well understood. Here, we identify the transcription factor, MondoA, as a regulator of cellular senescence, autophagy, and mitochondrial homeostasis. MondoA protects against cellular senescence by activating autophagy partly through the suppression of an autophagy-negative regulator, Rubicon. In addition, we identify peroxiredoxin 3 (Prdx3) as another downstream regulator of MondoA essential for mitochondrial homeostasis and autophagy. Rubicon and Prdx3 work independently to regulate senescence. Furthermore, we find that MondoA knockout mice have exacerbated senescence during ischemic acute kidney injury (AKI), and a decrease of MondoA in the nucleus is correlated with human aging and ischemic AKI. Our results suggest that decline of MondoA worsens senescence and age-associated disease.


Assuntos
Injúria Renal Aguda , Senescência Celular , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Homeostase , Camundongos , Mitocôndrias
8.
Kidney Int Rep ; 6(7): 1923-1938, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34307987

RESUMO

INTRODUCTION: Foot process effacement and mitochondrial fission associate with kidney disease pathogenesis. Electron microscopy is the gold-standard method for their visualization, but the observable area of electron microscopy is smaller than light microscopy. It is important to develop alternative ways to quantitatively evaluate these microstructural changes because the lesion site of renal diseases can be focal. METHODS: We analyzed elastica-Masson trichrome (EMT) and periodic acid-Schiff (PAS) stained kidney sections using structured illumination microscopy (SIM). RESULTS: EMT staining revealed three-dimensional (3D) structures of foot process, whereas ponceau xylidine acid fuchsin azophloxine solution induced fluorescence. Conversion of foot process images into their constituent frequencies by Fourier transform showed that the concentric square of (1/4)2-(1/16)2 in the power spectra (PS) included information for normal periodic structures of foot processes. Foot process integrity, assessed by PS, negatively correlated with proteinuria. EMT-stained sections revealed fragmented mitochondria in mice with mitochondrial injuries and patients with tubulointerstitial nephritis; Fourier transform quantified associated mitochondrial injury. Quantified mitochondrial damage in patients with immunoglobulin A (IgA) nephropathy predicted a decline in estimated glomerular filtration rate (eGFR) after kidney biopsy but did not correlate with eGFR at biopsy. PAS-stained sections, excited by a 640 nm laser, combined with the coefficient of variation values, quantified subtle changes in the basement membranes of patients with membranous nephropathy stage I. CONCLUSIONS: Kidney microstructures are quantified from sections prepared in clinical practice using SIM.

9.
Sci Rep ; 11(1): 73, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420268

RESUMO

Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-cell RNA sequencing data obtained from embryonic mouse kidney were re-analyzed. Manifold learning based on partition-based graph-abstraction coordinated cells, reflecting their expected lineage relationships. Consequently, the coordination in combination with ForceAtlas2 enabled the inference of parietal epithelial cells of Bowman's capsule and the inference of cells involved in the developmental process from the S-shaped body to each nephron segment. RNA velocity suggested developmental sequences of proximal tubules and podocytes. In combination with a Markov chain algorithm, RNA velocity suggested the self-renewal processes of nephron progenitors. NicheNet analyses suggested that not only cells belonging to ureteric bud and stroma, but also endothelial cells, macrophages, and pericytes may contribute to the differentiation of cells from nephron progenitors. Organ culture of embryonic mouse kidney demonstrated that nerve growth factor, one of the nephrogenesis-related factors inferred by NicheNet, contributed to mitochondrial biogenesis in developing distal tubules. These approaches suggested previously unrecognized aspects of the underlying mechanisms for kidney development.


Assuntos
Comunicação Celular , Rim/embriologia , Análise de Sequência de RNA , Análise de Célula Única/métodos , Animais , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento/genética , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/citologia , Néfrons/embriologia , Análise de Sequência de RNA/métodos
10.
Autophagy ; 17(7): 1700-1713, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32546086

RESUMO

Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases.Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Autofagia/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Animais , Rim/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fosfolipídeos/metabolismo
11.
Cardiovasc Drugs Ther ; 35(2): 381-397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33206298

RESUMO

PURPOSE: Left ventricular hypertrophy (LVH) is a cardiovascular complication highly prevalent in patients with chronic kidney disease (CKD). Previous studies analyzing 1α-hydroxylase or vitamin D receptor (Vdr) knockout mice revealed active vitamin D as a promising agent inhibiting LVH progression. Paricalcitol, an active vitamin D analog, failed to suppress the progression of LV mass index (LVMI) in pre-dialysis patients with CKD. As target genes of activated VDR differ depending on its agonists, we examined the effects of maxacalcitol (22-oxacalcitriol: OCT), a less calcemic active vitamin D analog, on LVH in hemodialysis patients and animal LVH models with renal insufficiency. METHODS: In retrospective cohort study, patients treated with OCT who underwent hemodialysis were enrolled. Using cardiac echocardiography, LV mass was evaluated by the area-length method. In animal study, angiotensin II (Ang II)-infused Wister rats with heminephrectomy or Ang II-stimulated neonatal rat ventricular myocytes (NRVM) were treated with OCT. RESULTS: OCT significantly inhibited the progression of LVMI in hemodialysis patients. In Ang II-infused heminephrectomized rats, OCT suppressed the progression of LVH in a blood pressure-independent manner. OCT also suppressed the activity of calcineurin in the left ventricle of model rats. Specifically, OCT reduced the protein levels of calcineurin A, but not the mRNA levels of Ppp3ca (calcineurin Aα). Luciferase assays showed that OCT increased the promoter activity of Fbxo32 (atrogin1), an E3 ubiquitin ligase targeting calcineurin A. Finally, OCT promoted ubiquitination and degradation of calcineurin A. CONCLUSION: Our works indicated that OCT retards progression of LVH through calcineurin-NFAT pathway, which reveal a novel aspect of OCT in attenuating pathological LVH.


Assuntos
Calcitriol/análogos & derivados , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Insuficiência Renal/complicações , Idoso , Animais , Calcineurina/efeitos dos fármacos , Calcitriol/farmacologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Gravidez , Ratos , Ratos Wistar , Estudos Retrospectivos
12.
Nephrol Dial Transplant ; 37(1): 53-62, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33367839

RESUMO

BACKGROUND: The inability of enzyme replacement therapy (ERT) to prevent progression of Fabry nephropathy (FN) in the presence of >1 g/day proteinuria underscores the necessity of identifying effective biomarkers for early diagnosis of FN preceding proteinuria. Here we attempted to identify biomarkers for early detection of FN. METHODS: Fifty-one Fabry disease (FD) patients were enrolled. Urinary mulberry bodies (uMBs) were immunostained for globotriaosylceramide (Gb3) and renal cell markers to determine their origin. The association between semiquantitative uMB excretion and the histological severity of podocyte vacuolation was investigated in seven patients using the vacuolated podocyte:glomerular average area ratio. The association between the semiquantitative estimate of uMB excretion and duration of ERT was analyzed. A longitudinal study was conducted to assess the effect of ERT on uMB excretion. RESULTS: Thirty-two patients (63%) had uMBs, while only 31% showed proteinuria. The uMBs were positive for Gb3, lysosomal-associated membrane protein 1 and podocalyxin, suggesting they were derived from lysosomes with Gb3 accumulation in podocytes. We observed more severe podocyte vacuolation with increased uMB excretion (P = 0.03 for trend); however, the same was not observed with increased proteinuria. The percentage of patients with substantial uMB excretion increased with shorter ERT duration (P = 0.018). Eighteen-month-long ERT reduced uMB excretion (P = 0.03) without affecting proteinuria. CONCLUSIONS: uMB excretion, implying ongoing podocyte injury, preceded proteinuria in most patients. Semiquantitative uMB estimates can serve as novel biomarkers for early FN diagnosis and for monitoring the efficacy of FD-specific therapies.


Assuntos
Doença de Fabry , Biomarcadores , Diagnóstico Precoce , Terapia de Reposição de Enzimas , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , Doença de Fabry/patologia , Humanos , Estudos Longitudinais , alfa-Galactosidase/uso terapêutico
13.
Am J Physiol Endocrinol Metab ; 320(2): E179-E190, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284092

RESUMO

Adiponectin (APN) is a circulating protein specifically produced by adipocytes. Native APN specifically binds to T-cadherin, a glycosylphosphatidylinositol-anchored protein, mediating the exosome-stimulating effects of APN in endothelial, muscle, and mesenchymal stem cells. It was previously reported that APN has beneficial effects on kidney diseases, but the role of T-cadherin has not been clarified yet. Here, our immunofluorescence study indicated the existence of both T-cadherin and APN protein in pericytes, subsets of tissue-resident mesenchymal stem/progenitor cells positive for platelet-derived growth factor receptor ß (PDGFRß), surrounding peritubular capillaries. In an acute renal ischemia-reperfusion (I/R) model, T-cadherin-knockout (Tcad-KO) mice, similar to APN-KO mice, exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability than wild-type mice. In addition, in response to I/R-injury, the renal PDGFRß-positive cell area increased in wild-type mice, but opposingly decreased in both Tcad-KO and APN-KO mice, suggesting severe pericyte loss. Mouse primary pericytes also expressed T-cadherin. APN promoted exosome secretion in a T-cadherin-dependent manner. Such exosome production from pericytes may play an important role in maintaining the capillary network and APN-mediated inhibition of renal tubular injury. In summary, our study suggested that APN protected the kidney in an acute renal injury model by binding to T-cadherin.NEW & NOTEWORTHY In the kidney, T-cadherin-associated adiponectin protein existed on peritubular capillary pericytes. In an acute renal ischemia-reperfusion model, deficiency of adiponectin or T-cadherin exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability, accompanied by severe pericyte loss. In vitro, adiponectin promoted exosome secretion from mouse primary pericytes in a T-cadherin-dependent manner. Adiponectin plays an important role in maintaining the capillary network and amelioration of renal tubular injury by binding to T-cadherin.


Assuntos
Adiponectina/genética , Caderinas/genética , Permeabilidade Capilar/genética , Nefropatias/genética , Traumatismo por Reperfusão/genética , Animais , Células Cultivadas , Nefropatias/etiologia , Nefropatias/patologia , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Índice de Gravidade de Doença
14.
Sci Rep ; 10(1): 19038, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149246

RESUMO

Dietary phosphate intake is closely correlated with protein intake. However, the effects of the latter on phosphate-induced organ injuries remain uncertain. Herein, we investigated the effects of low (10.8%), moderate (23.0%), and high (35.2%) dietary casein and egg albumin administration on phosphate-induced organ injuries in rats. The moderate and high casein levels suppressed renal tubulointerstitial fibrosis and maintained mitochondrial integrity in the kidney. The serum creatinine levels were suppressed only in the high casein group. Phosphate-induced muscle weakness was also ameliorated by high dietary casein. The urinary and fecal phosphate levels in the early experiment stage showed that dietary casein did not affect phosphate absorption from the intestine. High dietary egg albumin showed similar kidney protective effects, while the egg albumin effects on muscle weakness were only marginally significant. As the plasma branched-chain amino acid levels were elevated in casein- and egg albumin-fed rats, we analyzed their effects. Dietary supplementation of 10% branched-chain amino acids suppressed phosphate-induced kidney injury and muscle weakness. Although dietary protein restriction is recommended in cases of chronic kidney disease, our findings indicate that the dietary casein, egg albumin, and branched-chain amino acid effects might be reconsidered in the era of a phosphate-enriched diet.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Caseínas/administração & dosagem , Nefrite Intersticial/etiologia , Nefrite Intersticial/patologia , Ovalbumina/administração & dosagem , Fosfatos/efeitos adversos , Animais , Biópsia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Debilidade Muscular/dietoterapia , Debilidade Muscular/etiologia , Debilidade Muscular/patologia , Nefrite Intersticial/dietoterapia , Ratos
15.
Nephron ; 144 Suppl 1: 43-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227797

RESUMO

A 64-year-old man with nephrotic syndrome was admitted to another hospital where his renal biopsy revealed membranoproliferative glomerulonephritis (MPGN) with monoclonal immunoglobulin (Ig) G, subclass 1, κ light chain (IgG1κ) deposition on immunofluorescence (IF). Proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) was suspected due to monoclonal IgG1κ deposits and the absence of hematological abnormalities. However, the typical PGNMID phenotype was not observed by electron microscopy. Instead, an organized and striated muscle-like structure was observed in the subendothelial space. Since a 2-year treatment with immunosuppressants did not improve his proteinuria, a second biopsy was performed at our hospital. It showed an MPGN-like phenotype; however, monoclonal Ig deposits on IF were no longer observed. One year after the second biopsy, he developed ESRD. Thus, he underwent living kidney transplantation from his wife. Allograft biopsy was performed as proteinuria was observed 3 months after transplantation, which again showed an MPGN-like phenotype with monoclonal IgG1κ deposits. The observed electron-dense deposits were similar to those in the native biopsies. Accordingly, the patient was diagnosed with recurrent MPGN. Adding methylprednisolone pulse therapy to conventional immunosuppressants did not improve the patient's renal function or proteinuria. He died of Legionella pneumonia 8 months after transplantation. Considering the patient's histological findings of MPGN with monoclonal IgG1κ deposits and early recurrence of glomerulonephritis after transplantation, he was diagnosed with PGNMID with novel electron-dense deposits.


Assuntos
Glomerulonefrite Membranoproliferativa/patologia , Imunoglobulina G/análise , Rim/ultraestrutura , Biópsia , Glomerulonefrite Membranoproliferativa/imunologia , Humanos , Transplante de Rim , Masculino , Pessoa de Meia-Idade , Recidiva
16.
Nat Cell Biol ; 22(10): 1252-1263, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989250

RESUMO

Sensing and clearance of dysfunctional lysosomes is critical for cellular homeostasis. Here we show that transcription factor EB (TFEB)-a master transcriptional regulator of lysosomal biogenesis and autophagy-is activated during the lysosomal damage response, and its activation is dependent on the function of the ATG conjugation system, which mediates LC3 lipidation. In addition, lysosomal damage triggers LC3 recruitment on lysosomes, where lipidated LC3 interacts with the lysosomal calcium channel TRPML1, facilitating calcium efflux essential for TFEB activation. Furthermore, we demonstrate the presence and importance of this TFEB activation mechanism in kidneys in a mouse model of oxalate nephropathy accompanying lysosomal damage. A proximal tubule-specific TFEB-knockout mouse exhibited progression of kidney injury induced by oxalate crystals. Together, our results reveal unexpected mechanisms of TFEB activation by LC3 lipidation and their physiological relevance during the lysosomal damage response.


Assuntos
Injúria Renal Aguda/patologia , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Lipídeos/química , Lisossomos/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Injúria Renal Aguda/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cálcio/metabolismo , Células HeLa , Homeostase , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
17.
Kidney Int ; 97(6): 1164-1180, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32354638

RESUMO

Phosphate/calcium homeostasis is crucial for health maintenance. Lithocholic acid, a bile acid produced by intestinal bacteria, is an agonist of vitamin D receptor. However, its effects on phosphate/calcium homeostasis remain unclear. Here, we demonstrated that lithocholic acid increases intestinal phosphate/calcium absorption in an enterocyte vitamin D receptor-dependent manner. Lithocholic acid was found to increase serum phosphate/calcium levels and thus to exacerbate vascular calcification in animals with chronic kidney disease. Lithocholic acid did not affect levels of intestinal sodium-dependent phosphate transport protein 2b, Pi transporter-1, -2, or transient receptor potential vanilloid subfamily member 6. Everted gut sac analyses demonstrated that lithocholic acid increased phosphate/calcium absorption in a transcellular pathway-independent manner. Lithocholic acid suppressed intestinal mucosal claudin 3 and occludin in wild-type mice, but not in vitamin D receptor knockout mice. Everted gut sacs of claudin 3 knockout mice showed an increased permeability for phosphate, but not calcium. In patients with chronic kidney disease, serum 1,25(OH)2 vitamin D levels are decreased, probably as an intrinsic adjustment to reduce phosphate/calcium burden. In contrast, serum and fecal lithocholic acid levels and fecal levels of bile acid 7α-dehydratase, a rate-limiting enzyme involved in lithocholic acid production, were not downregulated. The effects of lithocholic acid were eliminated by bile acid adsorptive resin in mice. Thus, lithocholic acid and claudin 3 may represent novel therapeutic targets for reducing phosphate burden.


Assuntos
Cálcio , Receptores de Calcitriol , Animais , Cálcio/metabolismo , Humanos , Absorção Intestinal , Ácido Litocólico , Camundongos , Fosfatos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transcitose , Vitamina D
19.
Biochem Biophys Res Commun ; 524(3): 636-642, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32029271

RESUMO

Hyperphosphatemia is a common complication in patients with advanced chronic kidney disease (CKD) as well as an increased risk of cardiovascular mortality; however, the molecular mechanisms of phosphate-mediated kidney injury are largely unknown. Autophagy is a lysosomal degradation system, which plays protective roles against kidney diseases. Here, we studied the role of autophagy in kidney proximal tubular cells (PTECs) during phosphate overload. Temporal cessation of autophagy in drug-induced PTEC-specific autophagy-deficient mice that were fed high phosphate diet induced mild cytosolic swelling and an accumulation of SQSTM1/p62-and ubiquitin-positive protein aggregates in PTECs, indicating that phosphate overload requires enhanced autophagic activity for the degradation of increasing substrate. Morphological and biochemical analysis demonstrated that high phosphate activates mitophagy in PTECs in response to oxidative stress. PTEC-specific autophagy-deficient mice receiving heminephrectomy and autophagy-deficient cultured PTECs exhibited mitochondrial dysfunction, increased reactive oxygen species production, and reduced ATP production in response to phosphate overload, suggesting that high phosphate-induced autophagy counteracts mitochondrial injury and maintains cellular bioenergetics in PTECs. Thus, potentiating autophagic activity could be a therapeutic option for suppressing CKD progression during phosphate overload.


Assuntos
Autofagia , Rim/patologia , Mitocôndrias/patologia , Fosfatos/toxicidade , Animais , Autofagia/efeitos dos fármacos , Citoproteção , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Túbulos Renais Proximais/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitofagia
20.
Autophagy ; 16(10): 1889-1904, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31944172

RESUMO

Macroautophagy/autophagy is a lysosomal degradation system which plays a protective role against kidney injury. RUBCN/Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein) inhibits the fusion of autophagosomes and lysosomes. However, its physiological role in kidney proximal tubular epithelial cells (PTECs) remains uncertain. In the current study, we analyzed the phenotype of newly generated PTEC-specific rubcn-deficient (KO) mice. Additionally, we investigated the role of RUBCN in lipid metabolism using isolated rubcn-deficient PTECs. Although KO mice exhibited sustained high autophagic flux in PTECs, they were not protected from acute ischemic kidney injury. Unexpectedly, KO mice exhibited hallmark features of metabolic syndrome accompanied by expanded lysosomes containing multi-layered phospholipids in PTECs. RUBCN deficiency in cultured PTECs promoted the mobilization of phospholipids from cellular membranes to lysosomes via enhanced autophagy. Treatment of KO PTECs with oleic acid accelerated fatty acids transfer to mitochondria. Furthermore, KO PTECs promoted massive triglyceride accumulation in hepatocytes (BNL-CL2 cells) co-cultured in transwell, suggesting accelerated fatty acids efflux from the PTECs contributes to the metabolic syndrome in KO mice. This study shows that sustained high autophagic flux by RUBCN deficiency in PTECs leads to metabolic syndrome concomitantly with an accelerated mobilization of phospholipids from cellular membranes to lysosomes. Abbreviations: ABC: ATP binding cassette; ACADM: acyl-CoA dehydrogenase medium chain; ACTB: actin, beta; ATG: autophagy related; AUC: area under the curve; Baf: bafilomycin A1; BAT: brown adipose tissue; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; BW: body weight; CAT: chloramphenicol acetyltransferase; CM: complete medium; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; CTRL: control; EGFP: enhanced green fluorescent protein; CTSD: cathepsin D; EAT: epididymal adipose tissue; EGFR: epidermal growth factor receptor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FA: fatty acid; FBS: fetal bovine serum; GTT: glucose tolerance test; HE: hematoxylin and eosin; HFD: high-fat diet; I/R: ischemia-reperfusion; ITT: insulin tolerance test; KAP: kidney androgen regulated protein; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor related protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MAT: mesenteric adipose tissue; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NDRG1: N-myc downstream regulated 1; NDUFB5: NADH:ubiquinone oxidoreductase subunit B5; NEFA: non-esterified fatty acid; OA: oleic acid; OCT: optimal cutting temperature; ORO: Oil Red O; PAS: Periodic-acid Schiff; PFA: paraformaldehyde; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PPARA: peroxisome proliferator activated receptor alpha; PPARGC1A: PPARG coactivator 1 alpha; PTEC: proximal tubular epithelial cell; RAB7A: RAB7A, member RAS oncogene family; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RT: reverse transcription; RUBCN: rubicon autophagy regulator; SAT: subcutaneous adipose tissue; SFC: supercritical fluid chromatography; SQSTM1: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1; SV-40: simian virus-40; TFEB: transcription factor EB; TG: triglyceride; TS: tissue specific; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; UN: urea nitrogen; UQCRB: ubiquinol-cytochrome c reductase binding protein; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting; WAT: white adipose tissue.


Assuntos
Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Autofagia , Membrana Celular/metabolismo , Endocitose , Receptores ErbB/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Metabolismo dos Lipídeos , Lipidômica , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Consumo de Oxigênio , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA