Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Planta ; 256(3): 59, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984573

RESUMO

MAIN CONCLUSION: The feruloylarabinoxylan deposition was initiated at the formation of the secondary cell wall, especially S2 layer in moso bamboo, which may affect crosslinking between cell wall components and plant growth. Hemicelluloses, major components of plant cell walls that are hydrogen bonded to cellulose and covalently bound to lignin, are crucial determinants of cell wall properties. Especially in commelinid monocotyledons, arabinoxylan is often esterified with ferulic acid, which is essential to crosslinking with cell wall components. However, the deposition patterns and localization of ferulic acid during cell wall formation remain unclear. In this study, developing moso bamboo (Phyllostachys pubescens) culms were used to elucidate deposition patterns of hemicelluloses including feruloylarabinoxylan. Ferulic acid content peaked with cessation of elongation growth, and thereafter decreased and remained stable as culm development proceeded. During primary cell wall (PCW) formation, xyloglucan and (1,3;1,4)-ß-glucan signals were detected in all tissues. Along with culm development, arabinoxylan and feruloylarabinoxylan signals were sequentially observed in the protoxylem, vascular fibers and metaxylem, and parenchyma. Feruloylarabinoxylan signals were observed slightly later than arabinoxylan signals. Arabinoxylan signals were observed throughout the compound middle lamella and secondary cell wall (SCW), whereas the feruloylarabinoxylan signal was localized to the S2 layer of the SCW. These results indicate that the biosynthesis of hemicelluloses is regulated in accordance with cell wall layers. Feruloylarabinoxylan deposition may be initiated at the formation of SCW, especially S2 layer formation. Ferulic acid-mediated linkages of arabinoxylan-arabinoxylan and arabinoxylan-lignin would arise during SCW formation with the cessation of elongation growth.


Assuntos
Lignina , beta-Glucanas , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Poaceae/metabolismo , beta-Glucanas/metabolismo
2.
Plants (Basel) ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834600

RESUMO

Lignin is the second most abundant natural polymer on Earth and is a major cell wall component in vascular plants. Lignin biosynthesis has three stages: biosynthesis, transport, and polymerization of its precursors. However, there is limited knowledge on lignin precursor transport, especially in monocots. In the present study, we aimed to elucidate the transport mode of lignin monomers in the lignifying tissues of bamboo (Phyllostachys pubescens). The growth manners and lignification processes of bamboo shoots were elucidated, which enabled us to obtain the lignifying tissues reproducibly. Microsomal membrane fractions were prepared from tissues undergoing vigorous lignification to analyze the transport activities of lignin precursors in order to show the ATP-dependent transport of coniferin and p-glucocoumaryl alcohol. The transport activities for both precursors depend on vacuolar type H+-ATPase and a H+ gradient across the membrane, suggesting that the electrochemical potential is the driving force of the transport of both substrates. These findings are similar to the transport properties of these lignin precursors in the differentiating xylem of poplar and Japanese cypress. Our findings suggest that transport of coniferin and p-glucocoumaryl alcohol is mediated by secondary active transporters energized partly by the vacuolar type H+-ATPase, which is common in lignifying tissues. The loading of these lignin precursors into endomembrane compartments may contribute to lignification in vascular plants.

3.
New Phytol ; 230(6): 2186-2199, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33570753

RESUMO

The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2 L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.


Assuntos
Lignina , Madeira , Cycadopsida , Lacase , Polímeros
4.
J Biol Chem ; 295(15): 4870-4880, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32127399

RESUMO

Oligomers of ß-amyloid 42 (Aß42), rather than fibrils, drive the pathogenesis of Alzheimer's disease (AD). In particular, toxic oligomeric species called protofibrils (PFs) have attracted significant attention. Herein, we report RNA aptamers with higher affinity toward PFs derived from a toxic Aß42 dimer than toward fibrils produced from WT Aß42 or from a toxic, conformationally constrained Aß42 variant, E22P-Aß42. We obtained these RNA aptamers by using the preincubated dimer model of E22P-Aß42, which dimerized via a linker located at Val-40, as the target of in vitro selection. This dimer formed PFs during incubation. Several physicochemical characteristics of an identified aptamer, E22P-AbD43, suggested that preferential affinity of this aptamer toward PFs is due to its higher affinity for the toxic dimer unit (KD = 20 ± 6.0 nm) of Aß42 than for less-toxic Aß40 aggregates. Comparison of CD data from the full-length and random regions of E22P-AbD43 suggested that the preferential binding of E22P-AbD43 toward the dimer might be related to the formation of a G-quadruplex structure. E22P-AbD43 significantly inhibited the nucleation phase of the dimer and its associated neurotoxicity in SH-SY5Y human neuroblastoma cells. Of note, E22P-AbD43 also significantly protected against the neurotoxicity of WT Aß42 and E22P-Aß42. Furthermore, in an AD mouse model, E22P-AbD43 preferentially recognized diffuse aggregates, which likely originated from PFs or higher-order oligomers with curvilinear structures, compared with senile plaques formed from fibrils. We conclude that the E22P-AbD43 aptamer is a promising research and diagnostic tool for further studies of AD etiology.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Modelos Animais de Doenças , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Humanos , Imuno-Histoquímica , Camundongos , Placa Amiloide/genética , Placa Amiloide/metabolismo
5.
Sci Rep ; 9(1): 8900, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222148

RESUMO

Lignin is a cell wall component of vascular plants crucial for survival in terrestrial environments. While p-hydroxyphenyl lignin is minor, it is considered to be localised in the outermost part of the cell wall providing strong adhesion between cells, which determines cell shape. Transport of the lignin precursor from the cytosol to the cell wall is critical to regulate temporal and spatial lignin deposition; however, little information on the transport step is available. Here, we report transport activity of p-glucocoumaryl alcohol, a precursor of p-hydroxyphenyl lignin, in a broad-leaved tree (hybrid poplar, Populus sieboldii × P. grandidentata) and a coniferous tree (Japanese cypress, Chamaecyparis obtusa). Membrane vesicles of both trees were prepared from differentiating xylem with vigorous lignification and used for transport assays. Several inhibition assays indicated that not ABC transporters but the proton gradient and V-ATPase are involved in p-glucocoumaryl alcohol transport depending on ATP. These results support the hypothesis that p-glucocoumaryl alcohol is loaded into the secretory vesicles and delivered to the cell wall by exocytosis. Furthermore, this transport mechanism was common in both poplar and Japanese cypress, strongly suggesting that p-glucocoumaryl alcohol transport in the differentiating xylem is conserved within woody plants.


Assuntos
Álcoois/metabolismo , Cupressus/metabolismo , Populus/metabolismo , Prótons , Xilema/metabolismo , Transporte Biológico , Lignina/metabolismo
6.
Microsc Microanal ; 24(4): 442-452, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30175708

RESUMO

The distribution of lignin, 8-5' and 8-8' linked lignin substructure, and noncellulosic polysaccharides in hemp (Cannabis sativa L.) phloem fibers were explored based on histochemical and immunological methods. Ultraviolet absorption and potassium permanganate staining were observed mainly in the compound middle lamella (CML) and S1 layers, and rarely in the G-layer of phloem fibers, suggesting that lignin concentration is high at the CML and S1 layers, and very low at the G-layer of hemp fibers. Acriflavine staining, uniform KM1 labeling (8-5' linked lignin substructure), and no KM2 labeling (8-8' linked structure) were observed in the G-layer, suggesting that there is a small amount of lignin-like compound with 8-5' linked structure in the G-layer. In addition, some fiber cells showed a multilayered structure. Uniform arabinogalactan protein (AGP) labeling was observed on the S1 layers and G-layers using JIM14, but little appeared in the CML of hemp fibers, indicating that these layers of the phloem fibers contain AGP. Immunogold labeling of xylan (LM11) and glucomannan (LM21) showed that xylan and glucomannan were mainly present in the S1 layers and the G-layers, respectively. In some phloem fibers, LM21 immunofluorescence labeling showed multilayered structure, suggesting the heterogeneous distribution of glucomannan.


Assuntos
Cannabis/química , Parede Celular/química , Galactanos/metabolismo , Lignina/metabolismo , Floema/química , Polissacarídeos/metabolismo , Anticorpos Monoclonais/imunologia , Imunofluorescência , Lignina/imunologia , Mananas/análise , Coloração e Rotulagem , Xilanos/análise
7.
Biosci Biotechnol Biochem ; 82(10): 1780-1789, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29912643

RESUMO

Rhamnogalacturonan II (RG-II) is a region of pectin macromolecules that is present in plant primary cell walls. RG-II can be solubilized from cell walls as a borate-RG-II complex (B-RG-II), where two RG-II fragments are cross-linked via a borate diester linkage. Here, a rabbit monoclonal antibody against B-RG-II was prepared, which recognized both B-RG-II and RG-II monomers without borate ester-crosslinking. A pectic fragment with unknown structure was also recognized by the antibody, but neither homogalacturonan nor rhamnogalacturonan I was recognized. Immunoelectron microscopic analyses of Arabidopsis root tip cells were performed using this antibody. The signal was detected in developing cell plates and cell walls, which were denser in longitudinal walls than in transverse walls. These results coincide with our previous results obtained in suspension cultured tobacco cells, confirming that RG-II is present in cell plates at an early stage of their assembly. ABBREVIATIONS: B: boron; B-RG-II: borate-RG-II complex; ELISA: enzyme-linked immunosorbent assay; IgG: immunoglobulin G; mBSA: methylated bovine serum albumin; PGA: polygalacturonic acid; PLL: poly-l-lysine; RG-I: rhamnogalacturonan I; RG-II: rhamnogalacturonan II.


Assuntos
Anticorpos Monoclonais/imunologia , Arabidopsis/metabolismo , Pectinas/imunologia , Raízes de Plantas/metabolismo , Cromatografia por Troca Iônica , Ensaio de Imunoadsorção Enzimática , Congelamento , Imuno-Histoquímica , Microscopia Imunoeletrônica , Pressão
8.
J Agric Food Chem ; 66(13): 3449-3456, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553741

RESUMO

As the main hemicellulose of poplar, the interaction of xylan with lignin was expected to have profound effect on biomass recalcitrance. In this paper, the dynamic changes of xylan and lignin in poplar cell wall during a mild pretreatment using γ-valerolactone (GVL) was investigated using chemical and microscopic techniques. Synergetic dissolution of branched xylan and lignin from the secondary wall of the fiber cell was found to play a major role in opening the cell wall structure for enzymatic attack. In the case of the removal of xylan and lignin reaching a certain level, ß-O-4' cleavage of lignin which destroyed its interaction with hydrophobic cellulose face was found to make great contribution to the enhanced enzymatic hydrolysis. The deep understanding of this process could lead to a new insight into the understanding of the plant cell wall architecture and provide basic information for biomass processing.


Assuntos
Parede Celular/química , Celulase/química , Lignina/química , Populus/química , Xilanos/química , Biocatálise , Biotecnologia , Hidrólise , Solubilidade
9.
Biosci Biotechnol Biochem ; 82(7): 1143-1152, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29558856

RESUMO

A comprehensive understanding of the structure and properties of gramineous lignocelluloses is needed to facilitate their uses in biorefinery. In this study, lignocelluloses from fractionated internode tissues of two taxonomically close species, Erianthus arundinaceus and sugarcane (Saccharum spp.), were characterized. Our analyses determined that syringyl (S) lignins were predominant over guaiacyl (G) or p-hydroxyphenyl (H) lignins in sugarcane tissues; on the other hand, S lignin levels were similar to those of G lignin in Erianthus tissues. In addition, tricin units were detected in sugarcane tissues, but not in Erianthus tissues. Distributions of lignin inter-monomeric linkage types were also different in Erianthus and sugarcane tissues. Alkaline treatment removed lignins from sugarcane tissues more efficiently than Erianthus tissues, resulting in a higher enzymatic digestibility of sugarcane tissues compared with Erianthus tissues. Our data indicate that Erianthus biomass displayed resistance to alkaline delignification and enzymatic digestion.


Assuntos
Álcalis/química , Biomassa , Enzimas/metabolismo , Lignina/química , Polissacarídeos/metabolismo , Saccharum/química , Saccharum/classificação , Saccharum/enzimologia , Especificidade da Espécie
10.
Tree Physiol ; 37(12): 1767-1775, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177443

RESUMO

A gradual shift in the microfibril angle of gelatinous layer (G-layer) of tension wood fibres of the S1+G type has been detected via potassium permanganate (KMnO4) staining. Thus, microfibril angles in fibres of the S1+G type are different from S1+S2+G type fibres. We evaluated the microfibril orientation and presence of lignin and xylan in G-layers of tension wood fibres of the S1+G type in several Japanese hardwoods. The distribution of xylan and lignin was examined using immunoelectron microscopy with anti-xylan monoclonal antibody, ultraviolet (UV) microscopy, fluorescence microscopy after acrifravine staining and transmission electron microscopy after KMnO4 staining. In transverse sections, the outer parts of the G-layers showed ultraviolet absorption and a heterogeneous KMnO4 staining pattern, suggesting that lignin was heterogeneously distributed in the outer parts of the G-layers. The heterogeneous staining pattern was found in the G-layers of several tree species; however, the degree of staining differed between tree species. In longitudinal sections, the KMnO4-staining region in the G-layers continued parallel to the cell axis to variable lengths. The orientation of cellulose microfibrils changed gradually from a steep helix to parallel to the cell axis from the outer to inner parts of the G-layers. Xylan immunolabelling was observed in the outer part of the G-layers; in some fibres, labelling was found in the innermost parts of the G-layers. Following immunogold labelling combined with KMnO4 staining, xylan labelling was mainly found in KMnO4-stained electron-opaque regions, suggesting that lignin and xylan were heterogeneously colocalized in the outer parts of the G-layers. The rotation of cellulose microfibrils and heterogeneous distribution of xylan and lignin might be a general phenomenon in S1+G tension wood fibres.


Assuntos
Lignina/metabolismo , Madeira/metabolismo , Xilanos/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Madeira/ultraestrutura
11.
Fungal Genet Biol ; 109: 7-15, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030267

RESUMO

Peroxisomes are well-known organelles that are present in most eukaryotic organisms. Mutant phenotypes caused by the malfunction of peroxisomes have been shown in many fungi. However, these have never been investigated in Agaricomycetes, which include white-rot fungi that degrade wood lignin in nature almost exclusively and play an important role in the global carbon cycle. Based on the results of a forward genetics study to identify mutations causing defects in the ligninolytic activity of the white-rot Agaricomycete Pleurotus ostreatus, we report phenotypes of pex1 disruptants in P. ostreatus, which are defective in two major features of white-rot Agaricomycetes: lignin biodegradation and mushroom formation. Pex1 disruption was also shown to cause defects in the hyphal growth of P. ostreatus on certain sawdust and minimum media. We also demonstrated that pex1 is essential for fruiting initiation in the non-wood decaying Agaricomycete Coprinopsis cinerea. However, unlike P. ostreatus, significant defects in hyphal growth on the aforementioned agar medium were not observed in C. cinerea. This result, together with previous C. cinerea genetic studies, suggests that the regulation mechanisms for the utilization of carbon sources are altered during the evolution of Agaricomycetes or Agaricales.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carbono/metabolismo , Coprinus/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxissomos/metabolismo , Pleurotus/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Evolução Biológica , Biotransformação , Coprinus/genética , Coprinus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Genes Fúngicos , Mutagênese , Peroxissomos/genética , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento
12.
Sci Rep ; 7(1): 10230, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860612

RESUMO

Ionic liquid (IL) is one of the pretreatment processes gaining considerable interests to remove the native recalcitrance of lignocellulose. But the cellulose crystalline transformation during the pretreatment and their correlations with enzymatic digestibility have not been fully elucidated. Microcrystalline cellulose (Avicel) and holocellulose, which have differential sources and original crystallinity, were respectively pretreated with 1-butyl-3-methylimidazolium chloride ([C4min]Cl). Cellulose crystalline variations as well as chemical and morphological changes were determined. Crystallinity of different materials was proved to influence the effects of pretreatment and following enzymatic digestibility. Recrystallized cellulose Iß was revealed from slight initial cellulose Iα of Avicel, which was accomplished via formation of intermediate paracrystalline phases. The conversion yield of IL pretreated Avicel displayed no obvious changes, mainly resulted from initial high crystalline order and the recrystallization behavior. Recalcitrance of holocellulose was destroyed during cellulose allomorph transformation and hemicelluloses extraction, contributing to significant increase of glucose yield up to 92.20%. Explicit comprehension on cellulose supramolecular structure may help provide more efficient process for bioconversion after IL pretreatment.

13.
Biosci Biotechnol Biochem ; 81(5): 899-905, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28049369

RESUMO

Rhamnogalacturonan II (RG-II) is a region of pectin macromolecules that is present in plant primary cell walls. The RG-II region serves as the site of borate cross-linking within pectin, via which pectin macromolecules link together to form a gel. In this study, we examined whether RG-II is present in the cell plate, the precursor of primary cell walls that forms during cytokinesis. A structure inside dividing cells was labeled with a rabbit polyclonal anti-RG-II antibody and detected by immunofluorescence microscopy. An antibody against callose, a marker polysaccharide for the cell plate, also labeled the structure. In immunoelectron microscopy analyses using the anti-RG-II antibody, gold particles were distributed in electron-lucent vesicular structures that appeared to correspond to the forming cell plates in late anaphase cells. Together, these results suggest that RG-II is present in cell plates from the early phase of their assembly.


Assuntos
Nicotiana/citologia , Pectinas/metabolismo , Animais , Especificidade de Anticorpos , Transporte Biológico , Divisão Celular , Células Cultivadas , Epitopos/imunologia , Imuno-Histoquímica , Pectinas/imunologia , Coelhos , Nicotiana/metabolismo
14.
Int J Biol Macromol ; 95: 1210-1215, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27825996

RESUMO

Wood rotting basidiomycetes produce extracellular mucilaginous sheaths interfacing fungal hyphae and plant biomass. While the versatility of these fungal sheaths has been addressed, sheaths generated by selective white-rot fungi remain poorly understood. To fill this gap, the sheath produced by the basidiomycete Ceriporiopsis subvermispora, which degrades lignin while inflicting limited cellulose damage, was analyzed in this study. Fluorescence and transmission electron microscopy revealed that the sheath formed three days after inoculation into a beech wood slice on an agar plate and was embedded at the interface between fungal hyphae and wood cell walls. The sheath's chemical structure was evaluated from fungus cultures in a liquid medium containing [U-13C6]-d-glucose and beech wood slices. Compositional analysis, methylation analysis, and 13C NMR demonstrated that the sheath mainly consisted of a comb-like ß-1,6-glucopyranose residue-branched ß-1,3-glucan, which is advantageous to retain water and extracellular secondary metabolites.


Assuntos
Coriolaceae/química , Polissacarídeos Fúngicos/química , Hifas/química , Madeira/microbiologia , beta-Glucanas/química , Biodegradação Ambiental , Sequência de Carboidratos , Celulose/química , Celulose/metabolismo , Coriolaceae/metabolismo , Coriolaceae/ultraestrutura , Fagus/microbiologia , Polissacarídeos Fúngicos/metabolismo , Hifas/metabolismo , Hifas/ultraestrutura , Lignina/química , Lignina/metabolismo , Microscopia Eletrônica de Transmissão , beta-Glucanas/metabolismo
15.
Methods Mol Biol ; 1474: 233-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27515084

RESUMO

Cryofixation and freeze-substitution techniques provide excellent preservation of plant ultrastructure. The advantage of cryofixation is not only in structural preservation, as seen in the smooth plasma membrane, but also in the speed in arresting cell activity. Immunoelectron microscopy reveals the subcellular localization of molecules within cells. Immunolabeling in combination with cryofixation and freeze-substitution techniques provides more detailed information on the immunoelectron-microscopic localization of molecules in the plant cell than can be obtained from chemically fixed tissues. Here, we introduce methods for immunoelectron microscopy of cryofixed and freeze-substituted plant tissues.


Assuntos
Criopreservação/métodos , Substituição ao Congelamento/métodos , Imuno-Histoquímica/métodos , Cebolas/ultraestrutura , Células Vegetais/ultraestrutura , Inclusão do Tecido/métodos , Anticorpos/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Resinas Epóxi/química , Fixadores/química , Expressão Gênica , Glutaral/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Microscopia Imunoeletrônica/métodos , Microtomia , Cebolas/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Caules de Planta/ultraestrutura , Populus/metabolismo , Populus/ultraestrutura , Sementes/metabolismo , Sementes/ultraestrutura , Coloração e Rotulagem/métodos , Fixação de Tecidos/métodos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
Tree Physiol ; 36(5): 643-52, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26507270

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to detect monolignol glucosides in differentiating normal and compression woods of two Japanese softwoods, Chamaecyparis obtusa and Cryptomeria japonica Comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry collision-induced dissociation fragmentation analysis and structural time-of-flight (MALDI-TOF CID-FAST) spectra between coniferin and differentiating xylem also confirmed the presence of coniferin in differentiating xylem. However, as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF CID-FAST spectra of sucrose were similar to those of coniferin, it was difficult to distinguish the distribution of coniferin and sucrose using MALDI-MSI and collision-induced dissociation measurement only. To solve this problem, osmium tetroxide vapor was applied to sections of differentiating xylem. This vapor treatment caused peak shifts corresponding to the introduction of two hydroxyl groups to the C=C double bond in coniferin. The treatment did not cause a peak shift for sucrose, and therefore was effective in distinguishing coniferin and sucrose. Thus, it was found that MALDI-MSI combined with osmium tetroxide vapor treatment is a useful method to detect coniferin in differentiating xylem.


Assuntos
Chamaecyparis/metabolismo , Cinamatos/metabolismo , Cryptomeria/metabolismo , Madeira/metabolismo , Tetróxido de Ósmio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Agric Food Chem ; 63(18): 4613-20, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25775127

RESUMO

To elucidate the influence of wood polysaccharide components on lignin formation in vitro, models for polysaccharide matrix in wood secondary cell wall were fabricated from two types of bacterial cellulosic films, flat film (FBC) and honeycomb-patterned film (HPBC), as basic frameworks by depositing xylan onto the films. An endwise type of dehydrogenative polymerization, "Zutropfverfahren", of coniferyl alcohol was attempted in the films with/without xylan. The resultant dehydrogenation polymer (DHP) was generated inside and outside xylan-deposited films, whereas DHP was deposited only outside the films without xylan. The amount of the generated DHP in the xylan-deposited films was larger than that in the films without xylan. The frequency of 8-O-4' interunitary linkage in DHP was also increased by the xylan deposition. These results suggest that xylan acts as a scaffold for DHP deposition in polysaccharides matrix and as a structure regulator for the formation of the 8-O-4' linkage. In addition, mechanical properties, i.e., tensile strength and modulus of elasticity (MOE), of both cellulosic films were found to be augmented by the deposition of xylan and DHP. Especially, DHP deposition remarkably enhanced MOE. Such effects of xylan on DHP formation and augmentation of mechanical strength were clearly observed for HPBC, revealing that HPBC is a promising framework model to investigate wood cell wall formation in vitro.


Assuntos
Lignina/química , Fenóis/química , Polímeros/química , Xilanos/química , Elasticidade , Estrutura Molecular , Polimerização , Polímeros/síntese química , Resistência à Tração
18.
Planta ; 241(1): 243-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25269398

RESUMO

MAIN CONCLUSION: Immunolabeling by using monoclonal antibodies showed that xylan deposition precedes the formation of 8-5'-linked structure of lignin in normal and compression woods of Chamaecyparis obtusa. Xylan deposition and formation of 8-5'-linked lignin structure in differentiating xylems from normal and compression woods in Chamaecyparis obtusa were examined by immunoelectron microscopy using monoclonal antibodies (LM10 or LM11) to detect xylan localization. The 8-5'-linked lignin structure was immunolocalized using KM1 antibody. Xylan and 8-5'-linked lignin double immunolabeling was performed using secondary antibodies labeled with colloidal gold particles of different diameters. In normal wood, KM1 labeling occurred in the compound middle lamella (CML) and S1 layer during S1 layer formation and increased as S2 and S3 layers formed, with labeling occurring at the outer part of the previous layer. In compression wood, mild KM1 labeling occurred in the CML and outer part of the S1 layer at the later S1 layer formation stage, with increased labeling as the S2 layer formed. Minor labeling occurred in the outer part of the S2 layer during helical cavity formation. Comparison between KM1 labeling and KMnO4 staining suggested that lignin other than 8-5'-linked structure was formed during early lignification, and the proportion of 8-5'-linked lignin structure increased at later stages of lignification in both normal and compression woods. LM10 and LM11 labeling occurred slightly earlier than KM1 labeling, suggesting that xylan deposition preceded the formation of 8-5'-linked lignin in normal and compression woods. Less labeling by KM1, LM10, and LM11 occurred in the outer part of the S2 layer in compression wood, which has abundant lignin. Thus, lignin in these parts is composed of lignin substructures other than the 8-5' linkage.


Assuntos
Chamaecyparis/metabolismo , Lignina/análise , Madeira/metabolismo , Xilanos/análise , Anticorpos Monoclonais/imunologia , Chamaecyparis/ultraestrutura , Imuno-Histoquímica/métodos , Lignina/química , Lignina/imunologia , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Estrutura Molecular , Madeira/ultraestrutura , Xilanos/imunologia
19.
Phytochem Anal ; 26(2): 105-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25376900

RESUMO

INTRODUCTION: Hesperidin, a flavonoid known to have important pharmacological effects, accumulates particularly in the peels of satsuma mandarin (Citrus unshiu). Although histochemical studies have suggested that hesperidin forms crystals in some tissues of the Rutaceae and Umbelliferae, there has been no rigorous in situ detection or identification of hesperidin crystals in C. unshiu. OBJECTIVE: To characterise the chemical component of the crystals found in C. unshiu peels using Raman microscopy. METHODS: Sections of C. unshiu peels were made. The distribution and morphology of crystals in the sections were analysed microscopically. Raman microscopy was used to detect hesperidin in the sections directly. RESULTS: The crystals were more abundant in immature peel and were observed particularly in areas surrounding vascular bundles, around the border between the flavedo and albedo layers and just below the epidermal cells. In the morphological analysis by scanning electron microscopy, needle-shaped crystals aggregated and formed clusters of spherical crystals. Spectra obtained by Raman microscopy of the crystals in the peel sections were consistent with those of the hesperidin standard. CONCLUSION: This study showed the detailed distribution of crystals in C. unshiu peels and their main component was identified using Raman microscopy to be hesperidin for the first time.


Assuntos
Citrus/química , Hesperidina/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Citrus/ultraestrutura , Frutas/química , Frutas/ultraestrutura , Hesperidina/química , Microscopia Eletrônica de Varredura , Extratos Vegetais/química
20.
Tree Physiol ; 34(9): 1018-29, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25151648

RESUMO

Phloem fibres in Mallotus japonicus Müll. Arg. were found to have a multi-layered structure that is S1 + S2 + n(G + L), where a non-lignified gelatinous layer (G) and a lignified layer (L) are formed alternately and n indicates the number of repetitions of these two layers. The aim of this study was to determine the process of xylan deposition and lignification in the multi-layered cell walls of phloem fibres. The formation process of the multi-layered structure of secondary phloem fibres was examined by light microscopy, ultraviolet microscopy and transmission electron microscopy. The distribution of glucuronoxylan was examined by immunoelectron microscopy. The activity of peroxidase was also determined using metal-enhanced diaminobenzidine substrates. Immunolabelling of glucuronoxylan occurred in lignified cell wall layers, except in the compound middle lamella (CML), i.e., the S1, S2 and L layers but not the G layers. Change in immunolabelling density suggests that xylan deposition in these lignified layers occurs appositionally, i.e., xylan is deposited into the lignified layers directly and not by a penetrative mechanism, and deposition does not occur after the layers are fully deposited. Peroxidase activity was found in CML including cell corners during S2 layer formation, then in developing G layers during G layer formation. Peroxidase activity was also found in the thin L layers that formed recently and was not found in the L layers already present. Xylan labelling was not found in the thin L layers that formed recently but did occur in L layers that developed earlier. Lignification of the S1 and S2 layers continued during the formation of the G layers, whereas in the L layers it finished just after deposition of the L layer.


Assuntos
Parede Celular/diagnóstico por imagem , Mallotus (Planta)/metabolismo , Floema/citologia , Xilanos/metabolismo , Parede Celular/metabolismo , Mallotus (Planta)/citologia , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Microscopia Ultravioleta , Peroxidase/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA