Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(1): e10360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684076

RESUMO

Brain administration of human platelet lysates (HPL) is a potential emerging biotherapy of neurodegenerative and traumatic diseases of the central nervous system. HPLs being prepared from pooled platelet concentrates, thereby increasing viral risks, manufacturing processes should incorporate robust virus-reduction treatments. We evaluated a 19 ± 2-nm virus removal nanofiltration process using hydrophilic regenerated cellulose hollow fibers on the properties of a neuroprotective heat-treated HPL (HPPL). Spiking experiments demonstrated >5.30 log removal of 20-22-nm non-enveloped minute virus of mice-mock particles using an immuno-quantitative polymerase chain reaction assay. The nanofiltered HPPL (NHPPL) contained a range of neurotrophic factors like HPPL. There was >2 log removal of extracellular vesicles (EVs), associated with decreased expression of pro-thrombogenic phosphatidylserine and procoagulant activity. LC-MS/MS proteomics showed that ca. 80% of HPPL proteins, including neurotrophins, cytokines, and antioxidants, were still found in NHPPL, whereas proteins associated with some infections and cancer-associated pathways, pro-coagulation and EVs, were removed. NHPPL maintained intact neuroprotective activity in Lund human mesencephalic dopaminergic neuron model of Parkinson's disease (PD), stimulated the differentiation of SH-SY5Y neuronal cells and showed preserved anti-inflammatory function upon intranasal administration in a mouse model of traumatic brain injury (TBI). Therefore, nanofiltration of HPL is feasible, lowers the viral, prothrombotic and procoagulant risks, and preserves the neuroprotective and anti-inflammatory properties in neuronal pre-clinical models of PD and TBI.

2.
Cytotherapy ; 23(10): 902-907, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34238658

RESUMO

BACKGROUND AIMS: Platelet concentrates (PCs) are pooled to prepare human platelet lysate (HPL) supplements of growth media to expand primary human cells for transplantation; this increases the risk of contamination by known, emerging, and unknown viruses. This possibility should be of concern because viral contamination of cell cultures is difficult to detect and may have detrimental consequences for recipients of cell therapies. Viral reduction treatments of chemically defined growth media have been proposed, but they are not applicable when media contain protein supplements currently needed to expand primary cell cultures. Recently, we successfully developed a Planova 35NPlanova 20N nanofiltration sequence of growth media supplemented with two types of HPL. The nanofiltered medium was found to be suitable for mesenchymal Stromal cell (MSC) expansion. METHODS: Herein, we report viral clearance achieved by this nanofiltration process used for assessing a new experimental model using non-infectious minute virus of mice-mock virus particle (MVM-MVP) and its quantification by an immunoqPCR. Then, high doses of MVM-MVP (1012 MVPs/mL) were spiked to obtain a final concentration of 1010 MVPs/mL in Planova 35N-nanofiltered growth medium supplemented with both types of HPLs [serum converted platelet lysate SCPL) and intercept human platelet lysate (I-HPL)] at 10% (v/v) and then filtering through Planova 20N. RESULTS: No substantial interference of growth medium matrices by the immune-qPCR assay was first verified. Log reduction values (LRVs) were ≥ 5.43 and ≥ 5.36 respectively, SCPL and I-HPL media. MVM-MVPs were also undetectable by dynamic light scattering and transmission electron microscopy. CONCLUSIONS: The nanofiltration of growth media supplemented with 10% HPL provides robust removal of small nonenveloped viruses, and is an option to improve the safety of therapeutic cells expanded using HPL supplements.


Assuntos
Células-Tronco Mesenquimais , Vírus Miúdo do Camundongo , Animais , Técnicas de Cultura de Células , Meios de Cultura , Humanos , Camundongos , Vírion
3.
Cytotherapy ; 22(8): 458-472, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32536505

RESUMO

BACKGROUND AIMS: Human platelet lysate can replace fetal bovine serum (FBS) for xeno-free ex vivo expansion of mesenchymal stromal cells (MSCs), but pooling of platelet concentrates (PCs) increases risks of pathogen transmission. We evaluated the feasibility of performing nanofiltration of platelet lysates and determined the impact on expansion of bone marrow-derived MSCs. METHODS: Platelet lysates were prepared by freeze-thawing of pathogen-reduced (Intercept) PCs suspended in 65% storage solution (SPP+) and 35% plasma, and by serum-conversion of PCs suspended in 100% plasma. Lysates were added to the MSC growth media at 10% (v/v), filtered and subjected to cascade nanofiltration on 35- and 19-nm Planova filters. Media supplemented with 10% starting platelet lysates or FBS were used as the controls. Impacts of nanofiltration on the growth media composition, removal of platelet extracellular vesicles (PEVs) and MSC expansion were evaluated. RESULTS: Nanofiltration did not detrimentally affect contents of total protein and growth factors or the biochemical composition. The clearance factor of PEVs was >3 log values. Expansion, proliferation, membrane markers, differentiation potential and immunosuppressive properties of cells in nanofiltered media were consistently better than those expanded in FBS-supplemented media. Compared with FBS, chondrogenesis and osteogenesis genes were expressed more in nanofiltered media, and there were fewer senescent cells over six passages. CONCLUSIONS: Nanofiltration of growth media supplemented with two types of platelet lysates, including one prepared from pathogen-reduced PCs, is technically feasible. These data support the possibility of developing pathogen-reduced xeno-free growth media for clinical-grade propagation of human cells.


Assuntos
Plaquetas/citologia , Técnicas de Cultura de Células/métodos , Filtração , Células-Tronco Mesenquimais/citologia , Nanotecnologia , Adipogenia/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Soro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA