Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37760811

RESUMO

Recurrent glioblastoma multiforme (GBM) is largely attributed to peritumoral infiltration of tumor cells. As higher CD44 expression in the tumor periphery correlates with higher risk of GBM invasion, the present study analyzed the relationship between CD44 expression and magnetic resonance imaging (MRI)-based invasiveness of GBM on a large scale. We also quantitatively evaluated GBM invasion using 5-aminolevulinic acid (5-ALA) spectroscopy to investigate the relationship between CD44 expression and tumor invasiveness as evaluated by intraoperative 5-ALA intensity. Based on MRI, GBM was classified as high-invasive type in 28 patients and low-invasive type in 22 patients. High-invasive type expressed CD44 at a significantly higher level than low-invasive type and was associated with worse survival. To quantitatively analyze GBM invasiveness, the relationship between tumor density in the peritumoral area and the spectroscopic intensity of 5-ALA was investigated. Spectroscopy showed that the 5-ALA intensity of infiltrating tumor cells correlated with tumor density as represented by the Ki-67 staining index. No significant correlation between CD44 and degree of 5-ALA-based invasiveness of GBM was found, but invasiveness of GBM as evaluated by 5-ALA matched the classification from MRI in all except one case, indicating that CD44 expression at the GBM periphery could provide a reliable biomarker for invasiveness in GBM.

2.
Cells ; 10(1)2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375610

RESUMO

Although del Río-Hortega originally reported that leptomeningeal cells are the source of ramified microglia in the developing brain, recent views do not seem to pay much attention to this notion. In this study, in vitro experiments were conducted to determine whether leptomeninges generate ramified microglia. The leptomeninges of neonatal rats containing Iba1+ macrophages were peeled off the brain surface. Leptomeningeal macrophages strongly expressed CD68 and CD163, but microglia in the brain parenchyma did not. Leptomeningeal macrophages expressed epidermal growth factor receptor (EGFR) as revealed by RT-PCR and immunohistochemical staining. Cells obtained from the peeled-off leptomeninges were cultured in a serum-free medium containing EGF, resulting in the formation of large cell aggregates in which many proliferating macrophages were present. In contrast, colony-stimulating factor 1 (CSF1) did not enhance the generation of Iba1+ cells from the leptomeningeal culture. The cell aggregates generated ramified Iba1+ cells in the presence of serum, which express CD68 and CD163 at much lower levels than primary microglia isolated from a mixed glial culture. Therefore, the leptomeningeal-derived cells resembled parenchymal microglia better than primary microglia. This study suggests that microglial progenitors expressing EGFR reside in the leptomeninges and that there is a population of microglia-like cells that grow independently of CSF1.


Assuntos
Macrófagos , Microglia , Pia-Máter , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Microglia/metabolismo , Pia-Máter/citologia , Pia-Máter/metabolismo , Ratos , Ratos Wistar , Receptores de Superfície Celular/metabolismo
3.
Stem Cells Int ; 2018: 5387041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210550

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and a subpopulation of glioma stem-like cells (GSCs) is likely responsible for the invariable recurrence following maximum resection and chemoradiotherapy. As most GSCs that are located in the perivascular and perinecrotic niches should be removed during tumor resection, it is very important to know where surviving GSCs are localized. Here, we investigated the existence and functions of GSCs in the tumor periphery, which is considered to constitute the invasion niche for GSCs in GBM, by analyzing expression of stem cell markers and stem cell-related molecules and measuring particular activities of cultured GSCs. In addition, the relationship between GSCs expressing particular stem cell markers and pathological features on MRI and prognosis in GBM patients was analyzed. We showed that GSCs that express high levels of CD44 are present in the tumor periphery. We also found that vascular endothelial growth factor (VEGF) is characteristically expressed at a high level in the tumor periphery. Cultured GSCs obtained from the tumor periphery were highly invasive and have enhanced migration phenotype, both of which were markedly inhibited by CD44 knockdown. Higher expression of CD44 in the tumor periphery than in the core was correlated with a highly invasive feature on MRI and was associated with early tumor progression and worse survival, whereas lower expression of CD44 in the tumor periphery corresponded to low invasion and was associated with longer survival. The low invasion type on MRI tended to show high levels of VEGF expression in the tumor periphery, thus presenting the tumor with high proliferative activity. These results imply the significance of GSCs with high levels of CD44 expression in the tumor periphery compared to the core, not only in tumor invasion but also rapid tumor progression and short survival in patients with GBM.

4.
Biochem Biophys Res Commun ; 496(2): 542-548, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29339155

RESUMO

CD200 mediates immunosuppression in immune cells that express its receptor, CD200R. There are two CD200 variants; truncated CD200 that lacks the part of N-terminal sequence necessary for CD200R binding (CD200S) and full-length CD200 (CD200L). We established a novel lung metastasis model by subcutaneously transplanting C6 glioma cells into the backs of neonatal Wistar rats. All transplanted rats developed large back tumors, nearly 90% of which bore lung metastases. To compare the effects of CD200S and CD200L on tumor immunity, CD200L (C6-L)- or CD200S (C6-S)-expressing C6 cells were similarly transplanted. The results showed that 100% of rats with C6-L tumors developed lung metastases, while metastases were found in only 44% of rats with C6-S tumors (n = 25). Tumors disappeared in approximately 20% of the C6-S-bearing rats, and these animals evaded death 180 d after transplantation, while all C6-L tumor-bearing rats died after 45 d. Next generation sequencing revealed that C6-S tumors expressed chemokines and granzyme B at much higher levels than C6-L tumors. Flow cytometry revealed that C6-S tumors contained more dead cells and more CD45+ cells, including natural killer cells and CD8+ lymphocytes. In particular, multiple subsets of dendritic cells expressing CD11c, MHC class II, CD8, and/or CD103 were more abundant in C6-S than in C6-L tumors. These results suggested that CD200S induced the accumulation of multiple dendritic cell subsets that activated cytotoxic T lymphocytes, leading to the elimination of metastasizing tumor cells.


Assuntos
Antígenos CD/imunologia , Glioma/imunologia , Glioma/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Animais , Antígenos CD/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Tolerância Imunológica , Imunidade Celular , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Ratos Wistar , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-29234383

RESUMO

Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE), and aquaporin 4 (AQP4) plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg) treated group than in the nontreated (saline) group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function.

6.
Metab Brain Dis ; 32(6): 2095-2104, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28879430

RESUMO

Levels of high mobility group box 1 (HMGB1), an important inflammatory mediator, are high in the serum of febrile seizure (FS) patients. However, its roles in FS and secondary epilepsy after prolonged FS are poorly understood. We demonstrate HMGB1's role in the pathogenesis of hyperthermia-induced seizures (HS) and secondary epilepsy after prolonged hyperthermia-induced seizures (pHS). In the first experiment, 14-15-day-old male rats were divided into four groups: high-dose HMGB1 (100 µg), moderate-dose (10 µg), low-dose (1 µg), and control. Each rat was administered HMGB1 intranasally 1 h before inducing HS. Temperature was measured at seizure onset with electroencephalography (EEG). In the second experiment, 10-11-day-old rats were divided into four groups: pHS + HMGB1 (10 µg), pHS, HMGB1, and control. HMGB1 was administered 24 h after pHS. Video-EEGs were recorded for 24 h at 90 and 120 days old; histological analysis was performed at 150 days old. In the first experiment, the temperature at seizure onset was significantly lower in the high- and moderate-dose HMGB1 groups than in the control group. In the second experiment, the incidence of spontaneous epileptic seizure was significantly higher in the pHS + HMGB1 group than in the other groups. Comparison between pHS + HMGB1 groups with and without epilepsy revealed that epileptic rats had significantly enhanced astrocytosis in the hippocampus and corpus callosum. In developing rats, HMGB1 enhanced HS and secondary epilepsy after pHS. Our findings suggest that HMGB1 contributes to FS pathogenesis and plays an important role in the acquired epileptogenesis of secondary epilepsy associated with prolonged FS.


Assuntos
Febre/complicações , Proteína HMGB1/administração & dosagem , Convulsões Febris/etiologia , Convulsões/etiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroencefalografia , Masculino , Ratos , Ratos Sprague-Dawley
7.
Glia ; 65(11): 1833-1847, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28836295

RESUMO

Parkinson's disease (PD) symptoms do not become apparent until most dopaminergic neurons in the substantia nigra pars compacta (SNc) degenerate, suggesting that compensatory mechanisms play a role. Here, we investigated the compensatory involvement of activated microglia in the SN pars reticulata (SNr) and the globus pallidus (GP) in a 6-hydroxydopamine-induced rat hemiparkinsonism model. Activated microglia accumulated more markedly in the SNr than in the SNc in the model. The cells had enlarged somata and expressed phagocytic markers CD68 and NG2 proteoglycan in a limited region of the SNr, where synapsin I- and postsynaptic density 95-immunoreactivities were reduced. The activated microglia engulfed pre- and post-synaptic elements, including NMDA receptors into their phagosomes. Cells in the SNr and GP engulfed red fluorescent DiI that was injected into the subthalamic nucleus (STN) as an anterograde tracer. Rat primary microglia increased their phagocytic activities in response to glutamate, with increased expression of mRNA encoding phagocytosis-related factors. The synthetic glucocorticoid dexamethasone overcame the stimulating effect of glutamate. Subcutaneous single administration of dexamethasone to the PD model rats suppressed microglial activation in the SNr, resulting in aggravated motor dysfunctions, while expression of mRNA encoding glutamatergic, but not GABAergic, synaptic elements increased. These findings suggest that microglia in the SNr and GP become activated and selectively eliminate glutamatergic synapses from the STN in response to increased glutamatergic activity. Thus, microglia may be involved in a negative feedback loop in the indirect pathway of the basal ganglia to compensate for the loss of dopaminergic neurons in PD brains.


Assuntos
Neurônios Dopaminérgicos/patologia , Ácido Glutâmico/metabolismo , Microglia/fisiologia , Transtornos Parkinsonianos/patologia , Núcleo Subtalâmico/patologia , Sinapses/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Dopamina/genética , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Ácido Glutâmico/genética , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Prosencéfalo/citologia , Ratos , Ratos Wistar , Núcleo Subtalâmico/metabolismo , Simpatolíticos/toxicidade
8.
Neurochem Int ; 99: 158-168, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27392596

RESUMO

The low molecular weight organic compound bromovalerylurea (BU) has long been used as a hypnotic/sedative. In the present study, we found that BU suppressed mRNA expression of proinflammatory factors and nitric oxide release in lipopolysaccharide (LPS)-treated rat primary microglial cell cultures. BU prevented neuronal degeneration in LPS-treated neuron-microglia cocultures. The anti-inflammatory effects of BU were as strong as those of a synthetic glucocorticoid, dexamethasone. A rat hemi-Parkinsonian model was prepared by injecting 6-hydroxydopamine into the right striatum. BU was orally administered to these rats for 7 days, which ameliorated the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and alleviated motor deficits. BU suppressed the expression of mRNAs for interferon regulatory factors (IRFs) 1, 7 and 8 in the right (lesioned) ventral midbrain as well as those for proinflammatory mediators. BU increased mRNA expression of various neuroprotective factors, including platelet-derived growth factor and hepatocyte growth factor, but it did not increase expression of alternative activation (M2) markers. In microglial culture, BU suppressed the LPS-induced increase in expression of IRFs 1 and 8, and it reduced LPS-induced phosphorylation of JAK1 and STATs 1 and 3. Knockdown of IRFs 1 and 8 suppressed LPS-induced NO release by microglial cells. These results suggest that suppression of microglial IRF expression by BU prevents neuronal cell death in the injured brain region, where microglial activation occurs. Because many Parkinsonian patients suffer from sleep disorders, BU administration before sleep may effectively ameliorate neurological symptoms and alleviate sleep dysfunction.


Assuntos
Bromisoval/farmacologia , Neurônios Dopaminérgicos/metabolismo , Hipnóticos e Sedativos/farmacologia , Fatores Reguladores de Interferon/biossíntese , Microglia/metabolismo , Oxidopamina/toxicidade , Animais , Células Cultivadas , Técnicas de Cocultura , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/genética , Masculino , Microglia/efeitos dos fármacos , Ratos , Ratos Wistar
9.
Exp Neurol ; 277: 150-161, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724742

RESUMO

Exercise may be one of the most effective and sound therapies for stroke; however, the mechanisms underlying the curative effects remain unclear. In this study, the effects of forced treadmill exercise with electric shock on ischemic brain edema were investigated. Wistar rats were subjected to transient (90 min) middle cerebral artery occlusion (tMCAO). Eighty nine rats with substantially large ischemic lesions were evaluated using magnetic resonance imaging (MRI) and were randomly assigned to exercise and non-exercise groups. The rats were forced to run at 4-6m/s for 10 min/day on days 2, 3 and 4. Brain edema was measured on day 5 by MRI, histochemical staining of brain sections and tissue water content determination (n=7, each experiment). Motor function in some rats was examined on day 30 (n=6). Exercise reduced brain edema (P<0.05-0.001, varied by the methods) and ameliorated motor function (P<0.05). The anti-glucocorticoid mifepristone or the anti-mineralocorticoid spironolactone abolished these effects, but orally administered corticosterone mimicked the ameliorating effects of exercise. Exercise prevented the ischemia-induced expression of mRNA encoding aquaporin 4 (AQP4) and Na(+)/H(+) exchangers (NHEs) (n=5 or 7, P<0.01). Microglia and NG2 glia expressed NHE1 in the peri-ischemic region of rat brains and also in mixed glial cultures. Corticosterone at ~10nM reduced NHE1 and AQP4 expression in mixed glial and pure microglial cultures. Dexamethasone and aldosterone at 10nM did not significantly alter NHE1 and AQP4 expression. Exposure to a NHE inhibitor caused shrinkage of microglial cells. These results suggest that the stressful short-period and slow-paced treadmill exercise suppressed NHE1 and AQP4 expression resulting in the amelioration of brain edema at least partly via the moderate increase in plasma corticosterone levels.


Assuntos
Edema Encefálico/etiologia , Edema Encefálico/reabilitação , Terapia por Exercício/métodos , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/complicações , Trocadores de Sódio-Hidrogênio/metabolismo , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Aquaporina 4/metabolismo , Células Cultivadas , Corticosterona/metabolismo , Corticosterona/uso terapêutico , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Mifepristona/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Ratos , Ratos Wistar , Trocadores de Sódio-Hidrogênio/genética , Espironolactona/uso terapêutico , Fatores de Tempo
10.
Neuropathology ; 36(2): 168-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26350700

RESUMO

Blood vessels in brain tumors, particularly glioblastomas, have been shown to express CD90. CD90(+) cells in and around blood vessels in cancers including brain tumors have been identified as endothelial cells, cancer stem cells, fibroblasts or pericytes. In this study, we aimed to determine the nature or type(s) of cells that express CD90 in human brain tumors as well as an experimental rat glioma model by double immunofluorescence staining. The majority of CD90(+) cells in human glioblastoma tissue expressed CD31, CD34 and von Willebrand factor, suggesting that they were endothelial cells. Vasculatures in a metastatic brain tumor and meningioma also expressed CD90. CD90(+) cells often formed glomeruloid structures, typical of angiogenesis in malignant tumors, not only in glioblastoma but also in metastatic tumors. Some cells in the middle and outer layers of the vasculatures expressed CD90. Similar results were obtained in the rat glioma model. There were cells expressing both α-smooth muscle actin and CD90 in the middle layer of blood vessels, indicating that smooth muscle cells and/or pericytes may express CD90. CD90(+) vasculatures were surrounded by tumor-associated macrophages (TAMs). Thus, in addition to endothelial cells, some other types of cells, such as smooth muscle cells, pericytes and fibroblasts constituting the vasculature walls in brain tumors expressed CD90. Because CD90 has been shown to interact with integrins expressed by circulating monocytes, CD90 might be involved in angiogenesis through recruitment and functional regulation of TAMs in tumors. CD90(+) vasculatures may also interact with tumor cells through interactions with integrins. Because CD90 was not expressed by vasculatures in normal brain tissue, it might be a possible therapeutic target to suppress angiogenesis and tumor growth.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Células Endoteliais/metabolismo , Antígenos Thy-1/biossíntese , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Glioma/irrigação sanguínea , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Neovascularização Patológica , Pericitos/metabolismo , Ratos , Antígenos Thy-1/análise , Adulto Jovem
11.
Neurochem Int ; 90: 56-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26190182

RESUMO

Noradrenaline (NA) has marked anti-inflammatory effects on activated microglial cells. The present study was conducted to elucidate the mechanisms underlying the NA effects using rat primary cultured microglial cells. NA, an α1 agonist, phenylephrine (Phe) and a ß2 agonist, terbutaline (Ter) suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) release by microglia and prevented neuronal degeneration in LPS-treated neuron-microglia coculture. The agents suppressed expression of mRNA encoding proinflammatory mediators. Both an α1-selective blocker terazocine and a ß2-selective blocker butoxamine overcame the suppressive effects of NA. cAMP-dependent kinase (PKA) inhibitors did not abolish the suppressive NA effects. LPS decreased IκB leading to NFκB translocation into nuclei, then induced phosphorylation of signal transducer and activator of transcription 1 (STAT1) and expression of interferon regulatory factor 1 (IRF1). NA inhibited LPS-induced these changes. When NFκB expression was knocked down with siRNA, LPS-induced STAT1 phosphorylation and IRF1 expression was abolished. NA did not suppress IL-6 induced STAT1 phosphorylation and IRF1 expression. These results suggest that one of the critical mechanisms underlying the anti-inflammatory effects of NA is the inhibition of NFκB translocation. Although inhibitory effects of NA on STAT1 phosphorylation and IRF1 expression may contribute to the overall suppressive effects of NA, these may be the downstream events of inhibitory effects on NFκB. Since NA, Phe and Ter exerted almost the same effects and PKA inhibitors did not show significant antagonistic effects, the suppression by NA might not be dependent on specific adrenergic receptors and cAMP-dependent signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Norepinefrina/farmacologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Fosforilação/efeitos dos fármacos , Ratos
12.
J Neuroimmunol ; 282: 7-20, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25903723

RESUMO

Two types of macrophages in lesion core of rat stroke model were identified according to NG2 chondroitin sulfate proteoglycan (NG2) and CD200 expression. NG2(+) macrophages were CD200(-), and vice versa. NG2(-) macrophages expressed two splice variants of CD200 that are CD200L and CD200S. CD200(+) macrophages expressed CD8, CD68, CD163, CCL2, inducible nitric oxide synthase, interleukin-1ß, Toll-like receptor 4 and transforming growth factor ß, whilst NG2(+) cells expressed a costimulatory factor CD86. Both cell types expressed insulin-like growth factor 1 and CD200R. These results demonstrate that the two macrophage types cannot be classified as either M1 or M2.


Assuntos
Antígenos CD/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/patologia , Macrófagos/classificação , Macrófagos/metabolismo , Animais , Antígenos/metabolismo , Antígenos CD/genética , Transplante de Medula Óssea , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/cirurgia , Fator de Crescimento Insulin-Like I/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Receptor 4 Toll-Like/metabolismo
13.
Biochem Biophys Res Commun ; 459(2): 319-326, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25732089

RESUMO

Sepsis is a severe pathologic event, frequently causing death in critically ill patients. However, there are no approved drugs to treat sepsis, despite clinical trials of many agents that have distinct targets. Therefore, a novel effective treatment should be developed based on the pathogenesis of sepsis. We recently observed that an old hypnotic drug, bromvalerylurea (BU) suppressed expression of many kinds of pro- and anti-inflammatory mediators in LPS- or interferon-γ activated alveolar and peritoneal macrophages (AMs and PMs). Taken the anti-inflammatory effects of BU on macrophages, we challenged it to septic rats that had been subjected to cecum-ligation and puncture (CLP). BU was subcutaneously administered to septic rats twice per day. Seven days after CLP treatment, 85% of septic rats administrated vehicle had died, whereas administration of BU reduce the rate to 50%. Septic rats showed symptoms of multi-organ failure; respiratory, circulatory and renal system failures as revealed by histopathological analyses, blood gas test and others. BU ameliorated these symptoms. BU also prevented elevated serum-IL-6 level as well as IL-6 mRNA expression in septic rats. Collectively, BU might be a novel agent to ameliorate sepsis by preventing the onset of MOF.


Assuntos
Bromisoval/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Sepse/tratamento farmacológico , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas I-kappa B/metabolismo , Interferon gama/metabolismo , Interleucina-6/sangue , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Insuficiência de Múltiplos Órgãos/patologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT1/metabolismo , Sepse/etiologia , Sepse/fisiopatologia
14.
Biochim Biophys Acta ; 1850(6): 1197-205, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25644290

RESUMO

BACKGROUND: Drug resistance is a major obstacle for the efficacy of chemotherapeutic treatment of tumors. Oct-3/4, a self-renewal regulator in stem cells, is expressed in various kinds of solid tumors including glioblastoma. Although Oct-3/4 expression has been implicated in the malignancy and prognosis of glioblastomas, little is known of its involvement in drug resistances of glioblastoma. METHODS: The involvement of Oct-3/4 in drug resistance of glioblastoma cells was assessed by lactate dehydrogenase assay, efflux assay of an anticancer drug, poly ADP-ribose polymerase cleavage, and in vivo xenograft experiments. Involvement of a drug efflux pump ATP binding cassette transporter G2 in Oct-3/4-induced drug resistance was evaluated by quantitative PCR analysis and knockdown by shRNA. RESULTS: Oct-3/4 decreased the susceptibility to chemotherapeutic drugs by enhancing excretion of drugs through a drug efflux pump gene, ATP binding cassette transporter G2. Moreover, the expression of Oct-3/4 was well correlated to ATP binding cassette transporter G2 expression in clinical GB tissues. CONCLUSION: Oct-3/4 elevated the ATP binding cassette transporter G2 expression, leading to acquisition of a drug-resistant phenotype by glioblastoma cells. GENERAL SIGNIFICANCE: If the drug-resistance of glioblastoma cells could be suppressed, it should be a highly ameliorative treatment for glioblastoma patients. Therefore, signaling pathways from Oct-3/4 to ATP binding cassette transporter G2 should be intensively elucidated to develop new therapeutic interventions for better efficacy of anti-cancer drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Antimetabólitos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator 3 de Transcrição de Octâmero/genética , Fenótipo , Poli(ADP-Ribose) Polimerases/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos
15.
Metab Brain Dis ; 30(3): 813-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25575695

RESUMO

It remains unclear whether prolonged febrile seizures (pFS) in childhood facilitate mesial temporal lobe epilepsy (MTLE) in adulthood. Interleukin (IL)-1ß is associated with seizures in children and immature animal models. Here, we use a rat model of pFS to study the effects of IL-1ß on adult epileptogenesis, hippocampal damage, and cognition. We produced prolonged hyperthermia-induced seizures on postnatal days (P) 10-11 and administered IL-1ß or saline intranasally immediately after the seizures. Motor and cognitive functions were assessed at P85 using rotarod and passive avoidance tests. Electroencephalogram recordings were conducted at P90 and P120. Hippocampal CA1 and CA3 neurons and gliosis were quantified at the end of the experiment. Spontaneous seizure incidence was significantly greater in rats that had received IL-1ß than in those that had received saline or those without hyperthermia-induced seizures (p < 0.05). Seizure frequency did not differ significantly between the three groups and no motor deficits were observed. Passive avoidance learning was impaired in rats that received IL-1ß compared with controls (p < 0.05), but was not different from that in rats that received saline. Hippocampal cell numbers and gliosis did not differ between the three groups. These results indicate that neuronal loss and gliosis are not prerequisites for the epileptogenic process that follows pFS. Our results suggest that infantile pFS combined with IL-1ß overproduction can enhance adulthood epileptogenesis, and might contribute to the development of MTLE.


Assuntos
Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Interleucina-1beta/administração & dosagem , Interleucina-1beta/toxicidade , Convulsões Febris/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Epilepsia do Lobo Temporal/etiologia , Feminino , Humanos , Masculino , Ratos , Ratos Endogâmicos Lew , Convulsões Febris/complicações
16.
Cancer Res ; 75(6): 1123-33, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25627976

RESUMO

Glioma-initiating cells (GIC) have stem-like cell properties thought to be sufficient for recurrence, progression, and drug resistance in glioblastomas. In the present study, we defined miRNA (miR)-340 as a differentially expressed miRNA in human GICs that inhibit GIC-mediated tumorigenesis. Furthermore, we defined tissue plasminogen activator (PLAT) as a critical direct target of miR340 for inhibition. Among miRNAs screened, we found that miR340 expression was decreased in all human GICs and in human glioblastoma tissues, compared with human neural stem cells and normal brain tissues. miR340 overexpression in GICs suppressed their proliferative, invasive, and migratory properties in vitro, triggering cell senescence in vitro and inhibiting GIC-induced tumorigenesis in mouse brains. shRNA-mediated silencing of PLAT in GICs phenocopied the effects of miR340 overexpression in vitro and in vivo, suggesting a potential role for tissue factor in stem-like cell function. Taken together, our results identified miR340 as a tumor suppressor that functions in GIC to enforce PLAT blockade and ablate their stem-like functions.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas/fisiologia , Ativador de Plasminogênio Tecidual/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Camundongos , Invasividade Neoplásica , Ativador de Plasminogênio Tecidual/fisiologia
17.
Brain Tumor Pathol ; 32(1): 31-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348671

RESUMO

Accumulating evidence shows that the expression level of Oct-3/4, a self-renewal regulator in stem cells, is positively correlated with the progression of various solid tumors. However, little is known regarding the influence of Oct-3/4 in the tumor angiogenesis of glioblastomas. In the present study, we subcutaneously transplanted Oct-3/4-overexpressing human glioblastoma U251 (U251/EGFP-Oct-3/4) cells into the right thighs of nude mice to evaluate the roles of Oct-3/4 in the tumor angiogenesis. Both tumor size and the number of large vessels growing in the tumor were markedly increased. In an in vitro model of angiogenesis, the conditioned media from U251/EGFP-Oct-3/4 cells significantly accelerated capillary-like tube formation compared with that of U251/EGFP cells. In comparison with U251/EGFP cells, U251/EGFP-Oct-3/4 cells had markedly elevated the expression of vascular endothelial growth factor mRNA under the control of hypoxia-inducible factor (HIF) 1α. In U251/EGFP-Oct-3/4 cells, enhanced protein expression and nuclear translocation of HIF1α were observed. Furthermore, we demonstrated that the involvement of AKT, an oncogenic signaling molecule, in the Oct-3/4 induced upregulation of HIF1α protein. Our findings suggest that Oct-3/4-expressing glioblastoma cells have the ability to adapt to low-oxygen environments within tumor masses by promoting tumor angiogenesis through AKT-HIF1 pathway.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Neovascularização Patológica/genética , Fator 3 de Transcrição de Octâmero/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Neoplasias Encefálicas/metabolismo , Expressão Gênica , Glioblastoma/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Camundongos Nus , Transplante de Neoplasias , Fator 3 de Transcrição de Octâmero/genética , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/fisiologia , Células Tumorais Cultivadas
18.
Regul Toxicol Pharmacol ; 70(1): 107-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24995591

RESUMO

The potential use of pyrroloquinoline quinone disodium salt (BioPQQ™), as a supplemental food ingredient, was evaluated in a range of oral toxicity studies in rats including an acute study, a 14-day preliminary and a 28-day repeated-dose study, and a 13-week subchronic study. The median lethal dose of BioPQQ™ was shown to be 1000-2000mg/kg body weight (bw) in male and 500-1000mg/kgbw in female rats. In the 14-day study, high doses of BioPQQ™ resulted in increases in relative kidney weights with associated histopathology in female rats only, while a follow-up 28-day study in female animals resulted in increases in urinary protein and crystals. These findings were reversible, and resolved during the recovery period. In the 13-week study, a number of clinical chemistry findings and histopathological changes were noted, which were deemed to be of no toxicological significance, as the levels were within the historical control range, were not dose-dependent, occurred at a similar frequency in control groups, or only occurred in the control group. Based on these findings, a no-observed-adverse-effect level of 100mg/kgbw/day was determined for BioPQQ™ in rats, the highest dose tested in the 13-week study.


Assuntos
Rim/efeitos dos fármacos , Cofator PQQ/toxicidade , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Subcrônica/métodos , Animais , Relação Dose-Resposta a Droga , Feminino , Rim/metabolismo , Dose Letal Mediana , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Cofator PQQ/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
19.
Acta Neurol Belg ; 114(3): 179-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24002650

RESUMO

Febrile seizures (FS) are recognized as an antecedent to the development of temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), but it is unclear whether prolonged FS are a direct cause of TLE-HS. Here, we used a rat model of infantile FS to study the effects of inflammatory cytokines on seizure susceptibility and neuronal death in adults. Prolonged hyperthermia-induced seizures (pHS) were induced in male Lewis rats at post natal day (P) 10. Cytokines were administered twice intranasally, once immediately after pHS and once the following day. The effects of intranasal interleukin (IL)-1ß or tumor necrosis factor (TNF) α were tested in rats undergoing a single episode of pHS (P10) and in rats undergoing repeated pHS (P10 and P12). Seizure susceptibility was tested at P70-73 by quantifying the seizure onset time (SOT) after kainic acid administration, and neuronal cell injury and gliosis in adulthood. SOT significantly reduced in rats receiving IL-1ß together with repeated pHS, whereas no significant effects were seen in rats receiving IL-1ß after a single pHS episode, or in rats receiving TNFα. Hippocampal neuronal cell loss was observed in the CA3 region of rats receiving IL-1ß together with repeated pHS; however, there was no significant change in gliosis among each group. Our results are consistent with the hypothesis that excessive production of IL-1ß after repeated prolonged FS can enhance adult seizure susceptibility and neuronal cell death, and might contribute to the development of TLE-HS.


Assuntos
Hipocampo/patologia , Interleucina-1beta/toxicidade , Neurônios/patologia , Convulsões Febris/etiologia , Convulsões Febris/patologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Hipertermia Induzida/efeitos adversos , Masculino , Ratos , Ratos Endogâmicos Lew , Convulsões Febris/complicações , Fator de Necrose Tumoral alfa/toxicidade
20.
Glia ; 62(2): 185-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311432

RESUMO

We investigated activated microglia in ischemic brain lesions from rats that had been subjected to transient middle cerebral artery occlusion. Activated microglia expressing NG2 chondroitin sulfate proteoglycan (NG2) were found only in the narrow zone (demarcation zone) that demarcated the peri-infarct tissue and ischemic core. NG2(-) activated microglia were abundantly distributed in the peri-infarct tissue outside the demarcation zone. NG2(+) microglia but not NG2(-) microglia expressed both CD68 and a triggering receptor expressed on myeloid cells 2 (TREM-2), suggesting that NG2(+) microglia eliminated apoptotic neurons. In fact, NG2(+) microglia often attached to degenerating neurons and sometimes internalized NeuN(+) or neurofilament protein(+) material. Kinetic studies using quantitative real-time RT-PCR revealed that expression of transforming growth factor-ß1 (TGF-ß1) was most evident in the ischemic core; with this marker produced mainly by macrophages located in this region. TGF-ß receptor mRNA expression peaked at 3 days post reperfusion (dpr) in the peri-infarct tissue, including the demarcation zone. Primary cultured rat microglia also expressed the receptor mRNA. In response to TGF-ß1, primary microglia enhanced the expression of NG2 protein and TREM-2 mRNA as well as migratory activity. A TGF-ß1 inhibitor, SB525334, abolished these effects. The present results suggest that TGF-ß1 produced in the ischemic core diffused toward the peri-infarct tissue, driving activated microglial cells to eliminate degenerating neurons. Appropriate control of NG2(+) microglia in the demarcation zone might be a novel target for the suppression of secondary neurodegeneration in the peri-infarct tissue.


Assuntos
Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antígenos/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteoglicanas/metabolismo , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA