Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 137: 111080, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500469

RESUMO

Stochastic resonance (SR) is a weak noise stimulation that improves the function of standing balance by increasing sensitivity to somatosensory information. SR implemented in the lower limbs may increase the standing balance function, but the effect of noise stimulation on upper limbs has not been investigated to date. This study aims to investigate the effect of weak electrical noise stimulation of the median nerve at the wrist on the balance control system function using a portable stimulator. Ten healthy individuals participated in the study. Each subject maintained quiet standing with their eyes closed for 40 s while receiving white noise electrical stimulation to the median nerve at the wrist. Center of pressure (COP) displacement and change in the joint position (left and right waist) were measured and compared between a no-stimulus trial (control trial) and a stimulus intensity trial that maximized the effect of SR (optimal trial). Experimental results show that weak electrical noise stimulation of the median nerve at the wrist stabilized the COP and joint position. The anteroposterior (AP) standard deviation of the optimal trial were significantly reduced compared to the control trial in terms of COP and left and right waist, and AP low-frequency range power of the optimal trial were significantly reduced compared to the control trial in terms of COP and left waist. AP mean velocity and AP high-frequency range power at the left waist were significantly reduced in the optimal trial. It was concluded that weak electrical noise stimulation applied to the median nerve can reduce static postural sway.


Assuntos
Nervo Mediano , Punho , Humanos , Equilíbrio Postural/fisiologia , Posição Ortostática , Vibração
2.
Gait Posture ; 94: 39-44, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240552

RESUMO

BACKGROUND: The stochastic resonance (SR) phenomenon has been used to improve postural control through the application of imperceptible noise to the somatosensory system. White noise signals have been applied in numerous SR studies on postural control. However, because the SR effect depends on the noise structure, the stimulation effects of signals with different structures, such as pink noise and chaotic signals, on postural control, must be determined to achieve better clinical applications of SR technology. RESEARCH QUESTION: During quiet standing, how is postural control affected by subthreshold electrical stimulation to the knee joints when signals with different structures (white noise, pink noise, and chaotic signals) are used? METHODS: Sixteen healthy young adults stood quietly for 40 s with their eyes closed. To evaluate postural sway, we calculated the mean velocity, root mean square (CoPRMS), and range (CoPRange) values for the center of pressure (CoP) in the anteroposterior direction. The standing task was conducted under subthreshold electrical stimulation with white noise, pink noise, and chaotic signals based on the Lorenz system, in addition to the no-stimulation condition. The four stimulation conditions were randomized within each set and repeated seven times. RESULTS: Significant effects of stimulation were observed in the CoPRMS and CoPRange values. The CoPRMS value under the pink noise signal was significantly lower than that under the no-stimulation condition. The CoPRange value also tended to decrease under the pink noise signal compared with the no-stimulation condition; however, the differences were not statistically significant. No significant changes were found with the white noise and chaotic signals compared with the no-stimulation condition. SIGNIFICANCE: We demonstrated that the pink noise signal was more effective in reducing postural sway than the white noise and chaotic signals based on the Lorenz system during quiet standing.


Assuntos
Equilíbrio Postural , Posição Ortostática , Estimulação Elétrica , Humanos , Ruído , Equilíbrio Postural/fisiologia , Vibração , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA